亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的誘捕器內(nèi)紅脂大小蠹檢測(cè)模型
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

北京市科技計(jì)劃項(xiàng)目(Z171100001417005)


Detection Model of In-trap Red Turpentine Beetle Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    紅脂大小蠹是危害我國(guó)北方地區(qū)松杉類針葉樹種的重大林業(yè)入侵害蟲,其蟲情監(jiān)測(cè)是森林蟲害防治的重要環(huán)節(jié)。傳統(tǒng)的人工計(jì)數(shù)方法已經(jīng)無法滿足現(xiàn)代化紅脂大小蠹監(jiān)測(cè)的需求。為自動(dòng)化識(shí)別并統(tǒng)計(jì)信息素誘捕器捕獲的紅脂大小蠹,在傳統(tǒng)信息素誘捕器中集成攝像頭,自動(dòng)采集收集杯內(nèi)圖像,建立蠹蟲數(shù)據(jù)集。使用K-means聚類算法優(yōu)化Faster R-CNN深度學(xué)習(xí)目標(biāo)檢測(cè)模型的默認(rèn)框,并使用GPU服務(wù)器端到端地訓(xùn)練該模型,實(shí)現(xiàn)了誘捕器內(nèi)任意姿態(tài)紅脂大小蠹的目標(biāo)檢測(cè)。采用面向個(gè)體的定量評(píng)價(jià)和面向誘捕器的定性評(píng)價(jià)兩種評(píng)價(jià)方式。實(shí)驗(yàn)結(jié)果表明:較原始Faster R-CNN模型,該模型在困難測(cè)試集上面向個(gè)體和誘捕器的精確率-召回率曲線下面積(Area under the curve,AUC)提升了4.33%和3.28%。在整體測(cè)試集上個(gè)體和誘捕器AUC分別達(dá)0.9350、0.9722。該模型的檢測(cè)速率為1.6s/幅,準(zhǔn)確度優(yōu)于SSD、Faster R-CNN等目標(biāo)檢測(cè)模型,對(duì)姿態(tài)變化、雜物干擾、酒精蒸發(fā)等有較好的魯棒性。改進(jìn)后的模型可從被誘芯吸引的6種小蠹科昆蟲中區(qū)分出危害最大的紅脂大小蠹,自動(dòng)化地統(tǒng)計(jì)誘捕器內(nèi)紅脂大小蠹數(shù)量。

    Abstract:

    The red turpentine beetle (RTB) is a major forestry invasive insect that damages the coniferous species of pine trees in northern China. Therefore, the monitoring of RTB plays an important role in forestry pest controlling. However, traditional trap-based monitoring depends on human experts to manually recognize and count pests, which prohibits the modern RTB monitoring. To automatically recognize and count RTB captured by pheromone traps, a RGB camera was integrated in traditional cup trap to capture in-trap images and build the bark beetles dataset. The default boxes of Faster R-CNN object detection model based on deep learning were optimized by the K-means clustering algorithm. The optimized Faster R-CNN models were trained end to end by the GPU server, which enabled the in-trap detection of RTB with unconstrained postures. The models were evaluated by two metrics: the object oriented quantitative metric and the trap oriented qualitative metric. The experiments demonstrated that the optimized models outperformed the original Faster R-CNN model in terms of both metrics. The area under the curve (AUC) of precision-recall plot for object and trap on difficult test sets were increased by 4.33% and 3.28%, respectively. The AUC for object and trap on all test sets reached 0.9350 and 0.9722, respectively. The detection speed of the model was 1.6s per image. The optimized models outperformed the SSD, Faster R-CNN object detection models in terms of accuracy, which was robust to pose variance, bark interference, alcohol volatilization, etc. The proposed method distinguished and counted RTBs from the six species of scolytidae insects attracted by the pheromone lure, which could reduce the human cost of pest monitoring and forecasting.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫鈺,張冬月,袁明帥,任利利,劉文萍,王建新.基于深度學(xué)習(xí)的誘捕器內(nèi)紅脂大小蠹檢測(cè)模型[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):180-187. SUN Yu, ZHANG Dongyue, YUAN Mingshuai, REN Lili, LIU Wenping, WANG Jianxin. Detection Model of In-trap Red Turpentine Beetle Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):180-187.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-06-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期: