亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)粒子群算法的路徑規(guī)劃
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

吉林省科技發(fā)展計(jì)劃項(xiàng)目(20180201013GX)


Path Planning Based on Improved Particle Swarm Optimization Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    傳統(tǒng)粒子群算法存在收斂精度低、搜索停滯等缺點(diǎn),導(dǎo)致機(jī)器人路徑規(guī)劃精度低。為了提高路徑規(guī)劃的精度,對(duì)傳統(tǒng)的粒子群算法進(jìn)行改進(jìn)。首先在算法運(yùn)行的各階段對(duì)慣性權(quán)重因子和加速因子同時(shí)使用三角函數(shù)的變化方式自適應(yīng)調(diào)整,使算法中的參數(shù)在算法運(yùn)行各階段的配合達(dá)到最佳,提高了算法的搜索能力;其次在算法中引入雞群算法中的母雞更新方程和小雞更新方程對(duì)搜索停滯的粒子進(jìn)行擾動(dòng),并在引進(jìn)的方程中使用全局最優(yōu)解使擾動(dòng)后的粒子向全局最優(yōu)解靠近;最后通過(guò)函數(shù)優(yōu)化和路徑規(guī)劃兩組對(duì)比實(shí)驗(yàn),驗(yàn)證了改進(jìn)算法在問(wèn)題優(yōu)化時(shí)具有尋優(yōu)精度高、魯棒性好的優(yōu)點(diǎn)。

    Abstract:

    The traditional particle swarm optimization (PSO) algorithm has some shortcomings such as low convergence precision, stagnant search and so on, which lead to the low precision of robot path planning. In order to improve the precision of path planning, the traditional particle swarm optimization algorithm was improved. Firstly, the inertia weight factor and acceleration factor were adjusted adaptively by the trigonometric function in each stage of the algorithm operation, so that the parameters in the algorithm were optimized in each stage of the algorithm operation, and the search ability of the algorithm was improved. Secondly, the hen equation and chick equation of chicken swarm algorithm were introduced to perturb the search stagnation particles, and the global optimal solution was used in the introduced equation to make the disturbed particle approach the global optimal solution. Finally, through two sets of comparative experiments of function optimization and path planning, it was proved that the improved algorithm had the advantages of high searching precision and good robustness.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

賈會(huì)群,魏仲慧,何昕,張磊,何家維,穆治亞.基于改進(jìn)粒子群算法的路徑規(guī)劃[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(12):371-377. JIA Huiqun, WEI Zhonghui, HE Xin, ZHANG Lei, HE Jiawei, MU Zhiya. Path Planning Based on Improved Particle Swarm Optimization Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(12):371-377.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-12-10
  • 出版日期: