亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于HOG特征的IKSVM稻瘟病孢子檢測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

公益性行業(yè)農(nóng)業(yè)科研專項(xiàng)(201303005)、山東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系水稻創(chuàng)新項(xiàng)目和山東省“雙一流”獎(jiǎng)補(bǔ)資金項(xiàng)目(SYL2017XTTD14)


Spores Detection of Rice Blast by IKSVM Based on HOG Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為解決稻瘟病孢子的人工檢測(cè)過(guò)程中主觀性強(qiáng)、自動(dòng)化程度低、效率低等問(wèn)題,提出一種基于梯度方向直方圖特征(HOG特征)的加性交叉核支持向量機(jī)(IKSVM)的稻瘟病孢子檢測(cè)方法。該方法首先利用圖像采集系統(tǒng)采集稻瘟病孢子圖像,利用Gamma校正法調(diào)節(jié)圖像的對(duì)比度,抑制噪聲干擾;然后,提取孢子圖像的HOG特征作為輸入向量,輸入到支持向量機(jī)中,構(gòu)建加性交叉核支持向量機(jī)分類器;最后,通過(guò)訓(xùn)練得到稻瘟病孢子分類器。為測(cè)試所提出的HOG/IKSVM方法的綜合性能,分別選用HOG/線性SVM方法與HOG/徑向基核SVM(HOG/RBF-SVM)方法做對(duì)比試驗(yàn)。試驗(yàn)結(jié)果表明,HOG/IKSVM的檢測(cè)率為98.2%,高于HOG/線性SVM方法的79%;在平均檢測(cè)時(shí)間上,HOG/IKSVM方法的平均檢測(cè)耗時(shí)僅為HOG/RBF-SVM方法的1.1%。說(shuō)明該方法可以進(jìn)行稻瘟病孢子室內(nèi)檢測(cè)識(shí)別。

    Abstract:

    In order to solve the disadvantages such as strong subjectivity, low automation and low efficiency of spores detection in rice blast, an additive intersection kernel support vector machine (IKSVM) based on histogram of oriented gradient feature (HOG feature) was proposed to detect rice blast spores. Firstly, the image acquisition system was used to collect spores images of rice blast disease, and Gamma correction was used to adjust the contrast of the images to suppress noise interference. Secondly, the HOG feature of the spores image was extracted as input vectors and input into the support vector machine to construct the intersection kernel support vector machine classifier. Finally, the rice blast spores classifier was obtained by training. In order to test the comprehensive performance of proposed HOG/IKSVM, the HOG/linear SVM method and the HOG/radial basis function kernel SVM (RBF-SVM) method were used for the comparison test. The test results showed that the detection rate of HOG/IKSVM was 98.2%, which was higher than the 79% of the HOG/linear SVM method. On average detection time, the average detection time of HOG/IKSVM was only 1.1% of the HOG/RBF-SVM method. This method can be used as a rapid and accurate identification method for indoor detection of rice blast.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王震,褚桂坤,王金星,黃信誠(chéng),高發(fā)瑞,丁新華.基于HOG特征的IKSVM稻瘟病孢子檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(s1):387-392. WANG Zhen, CHU Guikun, WANG Jinxing, HUANG Xincheng, GAO Farui, DING Xinhua. Spores Detection of Rice Blast by IKSVM Based on HOG Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(s1):387-392.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2018-11-10
  • 出版日期:
文章二維碼