亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于混合蛙跳優(yōu)化的采摘機(jī)器人相機(jī)標(biāo)定方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0702100)、國(guó)家自然科學(xué)面上基金項(xiàng)目(31571568)、國(guó)家自然科學(xué)地區(qū)基金項(xiàng)目(61863011)、廣西自然科學(xué)青年基金項(xiàng)目(2015GXNSFBA139264)和廣西壯族自治區(qū)高等學(xué)校科學(xué)研究項(xiàng)目(KY2015YB304)


Camera Calibration Method of Picking Robot Based on Shuffled Frog Leaping Optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)采摘機(jī)器人領(lǐng)域傳統(tǒng)的張正友相機(jī)標(biāo)定方法存在對(duì)相機(jī)模型參數(shù)初值敏感和標(biāo)定結(jié)果不穩(wěn)定等問題,提出一種基于改進(jìn)混合蛙跳和LM算法的相機(jī)標(biāo)定方法。該方法把相機(jī)標(biāo)定劃分為兩步:①以混合蛙跳優(yōu)化為工具,求出相機(jī)模型參數(shù)的初始值,避免傳統(tǒng)張正友相機(jī)標(biāo)定方法直接求取相機(jī)模型的參數(shù)初值所帶來的初值敏感問題。②以改進(jìn)LM算法對(duì)第1步求出的相機(jī)模型參數(shù)初值進(jìn)行非線性優(yōu)化求精,避免張正友相機(jī)標(biāo)定方法須求取相機(jī)模型優(yōu)化參數(shù)的雅可比矩陣,從而導(dǎo)致標(biāo)定結(jié)果不穩(wěn)定的問題。采用OpenCV編寫采摘機(jī)器人雙目視覺標(biāo)定系統(tǒng),分別對(duì)傳統(tǒng)張正友相機(jī)標(biāo)定方法、基于遺傳算法的相機(jī)標(biāo)定方法、基于標(biāo)準(zhǔn)混合蛙跳算法的相機(jī)標(biāo)定方法和本文相機(jī)標(biāo)定方法進(jìn)行相機(jī)標(biāo)定試驗(yàn)。試驗(yàn)結(jié)果表明:本文相機(jī)標(biāo)定方法所獲得的左相機(jī)焦距的絕對(duì)誤差為0.065~0.506mm、相對(duì)誤差為1.899%~12.652%,平面靶標(biāo)圖像特征點(diǎn)的平均像素誤差為0.166~0.175像素;右相機(jī)焦距的絕對(duì)誤差為0.083~0.360mm、相對(duì)誤差為2429%~11.484%,平面靶標(biāo)圖像特征點(diǎn)的平均像素誤差為0.103~0.114像素;雙目相機(jī)之間距離的絕對(duì)誤差為1.866~2.789mm、相對(duì)誤差為3.209%~4.874%。以上參數(shù)精度及收斂速度和穩(wěn)定性均優(yōu)于其他相機(jī)標(biāo)定方法,從而驗(yàn)證了該方法所獲得的相機(jī)標(biāo)定參數(shù)具有較高的準(zhǔn)確性和可靠性。

    Abstract:

    Due to the traditional Zhang Zhengyou’s camera calibration method of picking robot existed the problems such as sensitive to initial value of camera model parameters and instability of calibration results, a camera calibration method based on improved shuffled frog leaping optimization and LM algorithm was proposed. The camera calibration was divided into two steps: the first step, calculating the initial values of the parameters of camera model with the shuffled frog leaping optimization, which avoided the sensitivity to the initial value of the camera model parameters that was directly calculated with the traditional Zhang Zhengyou’s camera calibration method; the second step, refining the initial values of the parameters of camera model that calculated in the first step with improved nonlinear optimization LM algorithm, which avoided must obtaining the Jacobi matrix to optimize the parameters of the camera model with the Zhang Zhengyou’s camera calibration method, which led to the instability of the calibration results. And the binocular vision calibration system of the picking robot was developed by OpenCV. The camera calibration experiments were carried out on the traditional Zhang Zhengyou’s camera calibration method, the camera calibration method based on genetic algorithm, the camera calibration method based on shuffled frog leaping optimization algorithm and the camera calibration method. The test results showed that the absolute error of the left camera focal length was 0.065~0.100mm, the relative error of the left camera focal length was 1.899%~12.652%, the average pixel error of the left plane target image was 0.166~0.175 pixel, the absolute error of the right camera focal length was 0.083~0.360mm, the relative error of the right camera focal length was 2.429%~11.484%, the average pixel error of the right plane target image was 0.103~0.114 pixel and the absolute error of distance of binocular camera was 1.866~2.789mm, the relative error of the distance between the binocular camera was 3.209%~4.874%, the convergence speed and stability, which were obtained by the camera calibration method, were all better than the other camera calibration methods in the above. So, these test results verified the calibration parameters obtained by the method had high accuracy and reliability.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

陳科尹,鄒湘軍,關(guān)卓懷,王剛,彭紅星,吳崇友.基于混合蛙跳優(yōu)化的采摘機(jī)器人相機(jī)標(biāo)定方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):23-34. CHEN Keyin, ZOU Xiangjun, GUAN Zhuohuai, WANG Gang, PENG Hongxing, WU Chongyou. Camera Calibration Method of Picking Robot Based on Shuffled Frog Leaping Optimization[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):23-34.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-03-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼