亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)K-means圖像分割算法的細(xì)葉作物覆蓋度提取
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0201503)、北京市農(nóng)林科學(xué)院科技創(chuàng)新能力建設(shè)專項(xiàng)(KJCX20170204)和北京市農(nóng)林科學(xué)院科研創(chuàng)新平臺(tái)建設(shè)項(xiàng)目(PT2018-22)


Improving Accuracy of Fine Leaf Crop Coverage by Improved K-means Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    植被覆蓋度是重要的農(nóng)學(xué)指標(biāo),圖像法作為一種方便、快捷、準(zhǔn)確度較高的地面測(cè)量方法,在該領(lǐng)域得到了廣泛應(yīng)用。圖像背景分割是獲取植被覆蓋度最關(guān)鍵的步驟,已有分割算法的分割對(duì)象局限于大葉植物或者長勢(shì)較為稀疏的作物,針對(duì)細(xì)葉作物的研究較少,或者未根據(jù)分割結(jié)果得出更有價(jià)值的規(guī)律。本文以小麥為例,提出了基于HSV空間的自適應(yīng)果蠅均值聚類算法(IFOA-K-means),用來分割圖像背景,以此作為獲取覆蓋度變化的理論基礎(chǔ)。采用小波分析按比例去噪算法單獨(dú)對(duì)亮度分量去噪,主體分割算法采用自適應(yīng)步長果蠅算法(IFOA)改進(jìn)的K-means算法對(duì)小麥圖像進(jìn)行背景分割,綜合了自適應(yīng)果蠅算法的全局最優(yōu)和K-means算法的局部最優(yōu)特點(diǎn),使分割效果達(dá)到最優(yōu)。其分割效果優(yōu)于基于遺傳算法的最大類間方差分割法,較好地去除了滴灌帶等較明顯干擾因素,與傳統(tǒng)的K-means算法相比,運(yùn)行時(shí)間和峰值信噪比指標(biāo)都較優(yōu),小麥覆蓋度準(zhǔn)確率在90%以上,與作物系數(shù)之間的決定系數(shù)為0.9531。

    Abstract:

    Canopy coverage is an important agronomic indicator. Image method is widely used in this field as a convenient, fast and accurate ground measurement method. Image background segmentation is the most critical step to obtain canopy coverage. Some segmentation algorithms have been limited to largeleaf plants or crops with relatively sparse growth. Few studies were on fine leaf crops, or no more valuable rules based on segmentation results. Therefore, taking wheat as an example, an IFOA-K-means algorithm based on HSV space was proposed. The K-means algorithm split the image background as a theoretical basis for obtaining coverage changes. Then the wavelet denoising algorithm was used to denoise the luminance component separately. The main segmentation algorithm was improved by the adaptive step size fruit fly algorithm (IFOA). The Kmeans algorithm was used to perform background segmentation on wheat images, and the global optimality of the adaptive fruit fly algorithm and local optimal features of the K-means algorithm were integrated to optimize the segmentation effect. The segmentation effect was better than the Ostu method based on genetic algorithm. It was better to remove the obvious interference factors such as drip irrigation belt, compared with the traditional Kmeans algorithm, the segmentation results were superior to the traditional algorithms in terms of running time and peak signal-to-noise ratio. The accuracy of wheat coverage was over 90%, the fit to the crop coefficient was as high as 0.9531, and the estimation of wheat growth status was estimated.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

吳煥麗,崔可旺,張馨,薛緒掌,鄭文剛,王巖.基于改進(jìn)K-means圖像分割算法的細(xì)葉作物覆蓋度提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):42-50. WU Huanli, CUI Kewang, ZHANG Xin, XUE Xuzhang, ZHENG Wengang, WANG Yan. Improving Accuracy of Fine Leaf Crop Coverage by Improved K-means Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):42-50.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼