亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Hadoop的氣象大數(shù)據(jù)分析GIS平臺(tái)設(shè)計(jì)與試驗(yàn)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(U1710123)、北京市自然科學(xué)基金項(xiàng)目(6161001)和北京林業(yè)大學(xué)青年教師科學(xué)研究中長期項(xiàng)目(2015ZCQ-LX-01)


Design and Test of GIS Platform for Meteorological Data Analysis Based on Hadoop
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)海量氣象數(shù)據(jù)在傳統(tǒng)WebGIS平臺(tái)下存儲(chǔ)和分析計(jì)算受到限制的問題,提出基于Hadoop的分布式計(jì)算和存儲(chǔ)框架,使用了Hadoop生態(tài)體系中的HDFS分布式文件存儲(chǔ)框架來存儲(chǔ)管理分析海量氣象數(shù)據(jù)。在海量數(shù)據(jù)的并行計(jì)算分析方面,使用MapReduce作為分布式計(jì)算編程模型,該模型通過分析海量氣候數(shù)據(jù)可對(duì)農(nóng)業(yè)生產(chǎn)進(jìn)行決策。最后,利用地理信息系統(tǒng)空間可視化技術(shù),在前端頁面以三維形式對(duì)分析結(jié)果進(jìn)行展示,并分析比較數(shù)據(jù)量和集群中節(jié)點(diǎn)數(shù)對(duì)計(jì)算耗時(shí)的影響。試驗(yàn)結(jié)果表明,使用分布式多節(jié)點(diǎn)集群可以有效提高海量氣象數(shù)據(jù)的存儲(chǔ)和計(jì)算效率,解決了傳統(tǒng)WebGIS平臺(tái)數(shù)據(jù)存儲(chǔ)與計(jì)算的局限性問題。

    Abstract:

    Massive meteorological data is limited in storage and analysis on the traditional WebGIS platform. A distributed computing and storage framework based on Hadoop to manage and analyze a large number of meteorological data was proposed. The HDFS distributed file storage framework was used in Hadoop ecosystem to store and manage massive meteorological data. In the aspect of parallel computing and analysis of massive data, MapReduce was used as the basis of distributed computing programming model. This model can make decision for agricultural production by analyzing massive climatic data. The application of regional large data decision analysis suitable for crop growth and the analysis of large data for meteorological disaster assessment were tried out. It had great application value for the research of climate change information extraction and analysis in agricultural production decisionmaking and other fields. Finally, the frontend pages displayed the analysis results in threedimensional form by using the geographic information system spatial visualization technology, which made the analysis results more intuitive, and easier to analyze and decisionmaking, and then the impact of size of data and the number of nodes in the cluster on computing timeconsuming was analyzed and compared, and the configuration was tuned the most efficient. Experiment results showed that using distributed multinode cluster can effectively improve the storage and calculation efficiency of massive meteorological data, and solve the limitations of traditional WebGIS platform.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李濤,馮仲科,孫素芬,程文生.基于Hadoop的氣象大數(shù)據(jù)分析GIS平臺(tái)設(shè)計(jì)與試驗(yàn)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(1):180-188. LI Tao, FENG Zhongke, SUN Sufen, CHENG Wensheng. Design and Test of GIS Platform for Meteorological Data Analysis Based on Hadoop[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(1):180-188.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-01-10
  • 出版日期:
文章二維碼