亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

水田田埂邊界支持向量機(jī)檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0700505)


Detection Method of Boundary of Paddy Fields Using Support Vector Machine
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    提出了基于支持向量機(jī)的水田田埂邊界線的檢測(cè)算法。采用支持向量機(jī)分類算法代替?zhèn)鹘y(tǒng)的圖像分割算法,分割水田圖像,提高了在不同光照條件下田埂邊界檢測(cè)的魯棒性。圖像預(yù)處理階段引入超像素分割算法,大大減少了后續(xù)圖像處理的計(jì)算量,并為支持向量機(jī)的模型訓(xùn)練提供大量的樣本。選取足夠數(shù)量的超像素樣本,提取其顏色特征和紋理特征,構(gòu)成19維的特征向量,并作為訓(xùn)練支持向量機(jī)模型的輸入。使用訓(xùn)練好的支持向量機(jī)模型識(shí)別新圖像中的水田田埂區(qū)域,模型評(píng)價(jià)指標(biāo)F1分?jǐn)?shù)達(dá)到90.7%。采用霍夫變換提取田埂邊界,在NVIDIA的Jetson TX2硬件平臺(tái)上,算法總運(yùn)行時(shí)間在0.8s以內(nèi),有效滿足了水田直播機(jī)的實(shí)時(shí)性要求。

    Abstract:

    Automatic navigation is the core elements of agricultural intelligence, and the machine vision based navigation route detection is the core content of automatic navigation system. An algorithm based on support vector machine was proposed to detect paddy field boundary. Support vector machine, instead of traditional image segmentation algorithms, was used to segment the paddy field image, and the robustness of boundary detection under different illumination conditions was improved. Superpixel segmentation algorithm was used to obtain superpixels instead of pixels for subsequent image processing. Superpixels reduced the computational complexity and provided a large number of samples for model training of support vector machine. A sufficient number of superpixel samples were selected for extracting color features and texture features to form a 19-dimensional feature vector. Color features were statistical properties in RGB and HSV color spaces, including R average, G average, B average, H average, S average, V average, H variance, S variance and V variance. Texture features included gradient amplitude mean and weighted gradient direction histogram. Then support vector machine model was trained and used to identify the paddy ridge field in the new picture. In order to judge the performance of the algorithm, the superpixel classification results and the actual manual labeling results were compared based on the 50 images containing paddy ridge field. The recognition F1-score can reach 90.7%. Finally, Hough detection was used to extract the boundary of the paddy ridge field. It took less than 0.8s on NVIDIA’s Jetson TX2 hardware platform by the algorithm and can meet the real-time requirement of agricultural machinery.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

蔡道清,李彥明,覃程錦,劉成良.水田田埂邊界支持向量機(jī)檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):22-27,109. CAI Daoqing, LI Yanming, QIN Chengjin, LIU Chengliang. Detection Method of Boundary of Paddy Fields Using Support Vector Machine[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):22-27,109.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-11-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期: