亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于RF算法優(yōu)選多時相特征的冬小麥空間分布自動解譯
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(41701387)、國家高分辨率對地觀測系統(tǒng)重大專項(67-Y40G09-9002-15/18)、河北省青年科學(xué)基金項目(D2018409029)、河北省高等學(xué)??茖W(xué)技術(shù)研究重點項目(ZD2016126)、北華航天工業(yè)學(xué)院博士基金項目(BKY-2015-02)和河北省航天遙感信息處理與應(yīng)用協(xié)同創(chuàng)新中心開放課題項目(XTZXKF201701)


Automatic Interpretation of Spatial Distribution of Winter Wheat Based on Random Forest Algorithm to Optimize Multi-temporal Features
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為探討如何利用遙感影像自動解譯技術(shù),實現(xiàn)冬小麥種植情況統(tǒng)計調(diào)查、提高提取精度,選擇冬小麥關(guān)鍵生育期6個時相的高分二號遙感影像數(shù)據(jù),分別從6個時相的近紅外灰度(NIR)、紅波段灰度(R)、綠波段灰度(G)、藍(lán)波段灰度(B)、比值植被指數(shù)(RVI)、歸一化植被指數(shù)(NDVI)6個特征中優(yōu)選出對冬小麥面積提取最敏感的1個特征作為輸入變量,每個時相選擇1個特征,6個時相共選出6個特征作為輸入變量,利用隨機森林算法構(gòu)建模型,提取冬小麥空間分布特征。選擇研究區(qū)不同長勢、不同種植品種的地塊樣本構(gòu)建訓(xùn)練集,利用多時相特征構(gòu)建模型,并將模型推廣應(yīng)用于整個大廠回族自治縣,得到大廠回族自治縣冬小麥的空間分布情況。通過與統(tǒng)計結(jié)果對比分析,經(jīng)過多時相特征優(yōu)選構(gòu)建的模型對冬小麥的識別精度接近90%。經(jīng)過樣本優(yōu)化和后期處理仍可提升精度,此方法能在保證提取精度的前提下對冬小麥進(jìn)行快速提取,提高相應(yīng)的工作效率。

    Abstract:

    In order to explore how to use the remote sensing image automatic interpretation technology to realize the winter wheat planting statistics survey and improve its extraction accuracy,the Gaofen-2 remote sensing image data of six key growth periods of winter wheat were selected. One of the most sensitive features to winter wheat area was selected respectively as the input variable from six features of near-infrared gray (NIR), red band gray (R), green band gray (G), blue wave band gray (B), ratio vegetation index (RVI) and normalized difference vegetation index (NDVI). One feature was selected for each time phase, and six features were selected for the six time phases. A model was constructed by using the random forest algorithm to extract winter wheat. The training set was constructed by selecting land samples with different growth and planting varieties in the study area. The model was constructed based on the multi-temporal features and applied to the whole Dachang Hui Autonomous County. The spatial distribution of winter wheat in Dachang Hui Autonomous County was obtained. Compared with the statistical results, the recognition accuracy of the model constructed by multi-temporal feature optimization was close to 90%. After sample optimization and post-processing, the accuracy can still be improved. This method can quickly extract winter wheat on the premise of ensuring the extraction accuracy, and greatly improve the corresponding work efficiency.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李旭青,劉世盟,李龍,金永濤,范文磊,吳伶.基于RF算法優(yōu)選多時相特征的冬小麥空間分布自動解譯[J].農(nóng)業(yè)機械學(xué)報,2019,50(6):218-225. LI Xuqing, LIU Shimeng, LI Long, JIN Yongtao, FAN Wenlei, WU Ling. Automatic Interpretation of Spatial Distribution of Winter Wheat Based on Random Forest Algorithm to Optimize Multi-temporal Features[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):218-225.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-01-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期: