亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于小波變換和BP神經(jīng)網(wǎng)絡(luò)的水稻冠層重金屬含量反演
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家高分辨率對(duì)地觀測(cè)系統(tǒng)重大專項(xiàng)(67-Y20A07-9002-16/17)、國(guó)家自然科學(xué)基金項(xiàng)目(41371407)、河北省青年科學(xué)基金項(xiàng)目(D2018409029)、河北省高等學(xué)??茖W(xué)技術(shù)研究重點(diǎn)項(xiàng)目(ZD2016126)、北華航天工業(yè)學(xué)院博士基金項(xiàng)目(BKY-2015-02)和河北省航天遙感信息處理與應(yīng)用協(xié)同創(chuàng)新中心開(kāi)放課題項(xiàng)目(XTZXKF201701)


Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    自然農(nóng)田生態(tài)系統(tǒng)中,農(nóng)作物的各種生化參數(shù)受重金屬污染脅迫后雖表現(xiàn)異常,但其特征往往極為微弱,極不穩(wěn)定。利用處理非穩(wěn)定信號(hào)方法中常用的信號(hào)處理方法——小波分析法(Db-5),對(duì)水稻的光譜反射率數(shù)據(jù)進(jìn)行處理,有效提取光譜信號(hào)中受重金屬污染脅迫而潛藏的一些“突變”弱信息。利用Db-5小波基進(jìn)行小波變換,從中選取具有異常光譜特征的奇異點(diǎn),利用奇異點(diǎn)對(duì)應(yīng)波段(716、745、766nm)的光譜反射率構(gòu)建反向傳播(BP)神經(jīng)網(wǎng)絡(luò)模型,對(duì)水稻冠層4種重金屬含量進(jìn)行反演。將利用模型得到的預(yù)測(cè)值與實(shí)測(cè)值進(jìn)行相關(guān)性分析,結(jié)果表明,基于BP神經(jīng)網(wǎng)絡(luò)的水稻冠層重金屬含量反演模型對(duì)于實(shí)驗(yàn)區(qū)鎘、鉛、汞、砷4種重金屬脅迫,具有良好的反演效果。

    Abstract:

    In the “natural farmland ecosystem”, although the biochemical parameters of crops are abnormal under the stress of heavy metal pollution, their characteristics are often very weak, with small changes and extreme unstability. Wavelet analysis, a common signal processing method in unstable signal processing, was used to process spectral reflectance data of crops (rice) and effectively extract weak information of “mutation” hidden in spectral signals under the stress of heavy metal pollution. Wavelet transform was carried out by using Db-5 wavelet basis, and singular points with abnormal spectral characteristics were selected. Back propagation neural network model (BPNN) was constructed by using spectral reflectance of corresponding bands of singular points (716nm, 745nm and 766nm) to invert the contents of four heavy metals in rice canopy. Correlation analysis was conducted between the predicted and measured values of the model, and the results showed that the inversion model of heavy metal content in rice canopy based on BP neural network had a good inversion effect on the stress of cadmium, lead, mercury and arsenic in the experimental area.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李旭青,李龍,莊連英,劉瑋琦,劉湘南,李杰.基于小波變換和BP神經(jīng)網(wǎng)絡(luò)的水稻冠層重金屬含量反演[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):226-232. LI Xuqing, LI Long, ZHUANG Lianying, LIU Weiqi, LIU Xiangnan, LI Jie. Inversion of Heavy Metal Content in Rice Canopy Based on Wavelet Transform and BP Neural Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):226-232.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-11-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期: