亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于LM算法的土壤表層含水率遙感監(jiān)測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)、陜西省水利科技計(jì)劃項(xiàng)目(2014slkj-18)和中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(2452015050)


Remote Sensing Monitoring of Soil Surface Moisture Content Based on LM Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為探討數(shù)據(jù)挖掘技術(shù)中LM(Levenberg-Marquardt)算法在土壤表層(約1cm)含水率遙感監(jiān)測(cè)中的應(yīng)用,選取黃綿土、粘黃土、紅土為試驗(yàn)材料,配制含水率分別為0、6%、10%、14%、18%、22%的土壤樣本,在09:00—10:00和15:00—16:00時(shí)間段進(jìn)行可見光采樣,并對(duì)圖像亮度進(jìn)行梯度處理,以此模擬全天光線變化。采用樣本實(shí)測(cè)含水率及圖像RGB三階顏色矩?cái)?shù)據(jù)作為數(shù)據(jù)集,對(duì)上午、下午樣本和兩時(shí)間段混合樣本采用LM算法建立含水率回歸模型,并與BP(Back propagation)算法和分類回歸樹(Classification and regression trees,CART)算法進(jìn)行比較。結(jié)果表明,基于土壤表層RGB顏色矩的LM算法具有較好的應(yīng)用效果,混合樣本不同土樣回歸模型決定系數(shù)R2分別為0.958、0.943、0.949,均方根誤差(RMSE)分別為1.6%、2.0%、1.9%,相對(duì)分析誤差(RPD)分別為4.873、4.183、4.440。不同光照時(shí)的混合樣品分析結(jié)果表明,LM算法適用于不同光線采集樣品的土壤含水率監(jiān)測(cè),適用于土壤表層(約1cm)含水率的監(jiān)測(cè)。

    Abstract:

    Aiming to research the data mining technology in remote sensing monitoring. The LM algorithm was used in the soil surface layer (about 1cm) of soil moisture measurement (soil moisture content, SMC). Three kinds of soil, including yellow spongy, loess and red clay were selected. The soil water content samples of 0, 6%, 10%, 14%, 18% and 22% were prepared respectively. Visible light images were taken during 09:00—10:00 and 15:00—16:00, and image brightness was gradiently processed for simulating the change of light throughout the day. LM algorithm was compared with back propagation (BP) algorithm and classification and regression trees (CART) algorithm to verify the practical effect of LM. It was showed that the LM algorithm had a good application effect for the data mining based on the RGB color moment of soil pictures. The determination coefficient of the regression model for yellow spongy, loess and red clay was 0.958, 0.943 and 0.949, root mean square error (RMSE) was 1.6%, 2.0% and 1.9%, and the relative analysis error (RPD) was 4.873, 4.183 and 4.440, respectively. By the study of pictures at different intensities, LM algorithm can be used for monitoring soil moisture content of samples. It can be used for the soil surface (about 1cm) moisture content measurement.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

許景輝,王雷,王一琛,趙鐘聲,韓文霆.基于LM算法的土壤表層含水率遙感監(jiān)測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):233-240. XU Jinghui, WANG Lei, WANG Yichen, ZHAO Zhongsheng, HAN Wenting. Remote Sensing Monitoring of Soil Surface Moisture Content Based on LM Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):233-240.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-12-07
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期: