亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于K-OPLS的無線傳感網(wǎng)絡(luò)室內(nèi)定位跟蹤算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(51467008)


Indoor Positioning Tracking Algorithm of Wireless Sensor Network Based on K-OPLS
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對基于指紋的無線傳感網(wǎng)絡(luò)室內(nèi)定位,提出了一種基于核隱變量正交投影(Kernelbased orthogonal projection to latent structures, K-OPLS)的定位算法。在O-PLS的模型框架下,K-OPLS算法應(yīng)用“核技巧”將描述變量映射至高維特征空間,給出了描述變量和響應(yīng)變量之間的非線性關(guān)系,以實(shí)現(xiàn)對模型的預(yù)測成分及與響應(yīng)-正交成分的計算。K-OPLS算法集核偏最小二乘建模和正交信號校正預(yù)處理方法于一體,在一定程度上有效地改進(jìn)了模型性能,增強(qiáng)了模型解釋性?;赗SSI指紋信息,構(gòu)建錨節(jié)點(diǎn)與處于參考位置的非錨節(jié)點(diǎn)之間的非線性映射關(guān)系,K-OPLS算法可以實(shí)現(xiàn)WSN的室內(nèi)定位跟蹤。將所提出的算法應(yīng)用于仿真與物理環(huán)境下的不同實(shí)例中,在同等條件下,還與核嶺回歸(KRR)、核極限學(xué)習(xí)機(jī)(KELM)、核信噪比(KSNR)、核偏最小二乘(KPLS)、核自適應(yīng)濾波等其他核學(xué)習(xí)算法進(jìn)行比較。仿真實(shí)驗(yàn)中,基于小波核的WK-OPLS算法在無噪聲和有噪聲環(huán)境下的跟蹤估計誤差分別為0.2326、1.3205m。物理實(shí)驗(yàn)中,基于小波核的該算法跟蹤估計誤差為0.2493m。實(shí)驗(yàn)結(jié)果表明,所提算法有效提高了定位精度,而且具有一定的除噪能力。

    Abstract:

    For the wireless sensor network based on fingerprint indoor positioning, an indoor positioning algorithm based on kernel-based orthogonal projection to latent structures (K-OPLS) was proposed. O-PLS was a universal linear multivariate data modeling algorithm, which can remove the irrelevant components in the input and output, that was, eliminating the variation components from the description variable (input) that were orthogonal to the response variable (output). Under the model framework of O-PLS, the ‘kernel trick’ was applied by the K-OPLS algorithm to map the description variable to the high-dimensional feature space, and the nonlinear relation between the description and response variables was given, so as to achieve the calculation of the predictive component of the model and the response-orthogonal component. Therefore, the essence of K-OPLS algorithm was to integrate the kernel partial least square modeling and orthogonal signal correction preprocessing method, which can effectively improve the performance of the model and enhance the interpretation of the model to some extent. Based on RSSI fingerprint information, the K-OPLS algorithm can achieve the indoor localization tracking for WSNs by building the nonlinear mapping relation between anchor node and non-anchor node in the reference position. The proposed algorithm was applied to different examples in the simulation and physical environment. Under the same conditions, it was also compared with other kernel-based learning algorithm, such as kernel ridge regression (KRR), kernel extreme learning machine (KELM), kernel signal to noise ratio (KSNR), kernel partial least squares (KPLS), and kernel adaptive filtering etc. In the simulation experiment, the tracking error of the WK-OPLS algorithm based on wavelet kernel was 0.2326m and 1.3205m, respectively, in no-noise and noisy environments. In physical experiments, the tracking error of the algorithm based on wavelet kernel was 0.2493m. The experimental results showed that the proposed algorithm not only improved the positioning accuracy effectively, but also had a certain ability to remove noise.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李軍,后新燕.基于K-OPLS的無線傳感網(wǎng)絡(luò)室內(nèi)定位跟蹤算法[J].農(nóng)業(yè)機(jī)械學(xué)報,2019,50(6):265-271,298. LI Jun, HOU Xinyan. Indoor Positioning Tracking Algorithm of Wireless Sensor Network Based on K-OPLS[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(6):265-271,298.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2018-11-16
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-06-10
  • 出版日期: