亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進殘差網(wǎng)絡的黑毛豬肉新鮮度識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

安徽省重點研究與開發(fā)計劃項目(1804a0702130)、國家自然科學基金項目(31671589、31771679)、安徽省科技重大攻關項目(16030701092)和農(nóng)業(yè)農(nóng)村部農(nóng)業(yè)電子商務重點實驗室開放基金項目(AEC2018010、AEC2018003)


Freshness Identification of Iberico Pork Based on Improved Residual Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提高黑毛豬肉新鮮度的識別準確率,提出基于改進殘差網(wǎng)絡和遷移學習的黑毛豬肉新鮮度識別方法。首先,根據(jù)豬肉的微生物菌體濃度、大腸菌菌體濃度和pH值,結合國家標準,將豬肉新鮮度分為7個類別;然后,將ResNet-50模型用PfidSet數(shù)據(jù)集訓練,使其具有抽取圖像特征的能力,利用模型遷移和模型微調對ResNet-50模型進行改進,即用一個3層的自適應網(wǎng)絡取代ResNet-50模型的全連接層和分類層,再使用在PfidSet上訓練的網(wǎng)絡參數(shù)初始化改進的ResNet-50模型權重,運用LReLu-Softplus作為自適應網(wǎng)絡的激活函數(shù);最后,將改進ResNet-50模型在豬肉樣品的圖像數(shù)據(jù)集上學習得到的知識,遷移到黑毛豬肉新鮮度識別任務。選取7類共計23427幅黑毛豬肉圖像組成樣本集,從樣本集中隨機選擇80%的樣本用作訓練集、其余20%用作測試集進行測試,試驗結果表明,遷移學習能夠明顯提高模型的收斂速度和識別性能,數(shù)據(jù)擴充有助于增加數(shù)據(jù)的多樣性,避免出現(xiàn)過擬合現(xiàn)象,在遷移學習和數(shù)據(jù)擴充方式下的總體識別準確率達到94.5%,是一種高效的豬肉新鮮度識別方法。

    Abstract:

    In order to improve the accuracy of pork freshness identification, a method for pork freshness identification based on improved residual network and transfer learning was proposed. First of all, the pork freshness was classified into seven grades, according to the aerobic plate count, coliform bacteria and pH value of pork combined with national pork food standards(national standards). The ResNet-50 model was trained with the PfidSet data set to have the ability of extracting image features. Then, the ResNet-50 model was improved by using model transferring and model finetuning in the following ways: firstly, replacing the full connection and classification layers of the ResNet-50 model with a 3layer adaptive network; next, initializing the improved ResNet-50 model weights by using the network parameters trained on the PfidSet; then using LReLu-Softplus as the activation function of the adaptive network; finally, transferring the knowledge gained by the improved ResNet-50 model on the image data set of the pork sample to the task of Iberico pork freshness identification. A total of 23427 images were selected to form the sample set. Then, 80% of the samples were randomly selected from the sample set to be used as the training set, and the remaining 20% for the test set. The test results showed that transfer learning could significantly improve the convergence speed and classification performance of the model, and data augmentation could increase the diversity of data, avoiding overfitting phenomena. The accuracy of classification in transfer learning and data augmentation could reach as high as 94.5%. Moreover, the test method was an efficient method for classifying pork freshness.

    參考文獻
    相似文獻
    引證文獻
引用本文

焦俊,王文周,侯金波,孫裴,何嶼彤,辜麗川.基于改進殘差網(wǎng)絡的黑毛豬肉新鮮度識別方法[J].農(nóng)業(yè)機械學報,2019,50(8):364-371. JIAO Jun, WANG Wenzhou, HOU Jinbo, SUN Pei, HE Yutong, GU Lichuan. Freshness Identification of Iberico Pork Based on Improved Residual Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(8):364-371.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-01-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-08-10
  • 出版日期: 2019-08-10
文章二維碼