亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)人工勢場法的路徑規(guī)劃決策一體化算法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(51775247、51305167)、江蘇省普通高校研究生科研創(chuàng)新計(jì)劃項(xiàng)目(KYCX18_2230)和國家自然科學(xué)基金聯(lián)合基金重點(diǎn)項(xiàng)目(U1564201)


Integration Algorithm of Path Planning and Decision-making Based on Improved Artificial Potential Field
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    車輛路徑規(guī)劃與決策算法是無人駕駛汽車的重要研究方向之一?,F(xiàn)有的路徑規(guī)劃與路徑跟蹤決策算法中規(guī)劃層與決策層存在時(shí)滯現(xiàn)象,往往會引起檢測信息與真實(shí)行駛環(huán)境信息的偏差,使得規(guī)劃的局部路徑不能反映當(dāng)前真實(shí)狀態(tài),是無人駕駛汽車安全行駛的不穩(wěn)定因素。本文綜合考慮了環(huán)境交通參與者與車輛自身運(yùn)動學(xué)特征,建立了橫縱向安全模型,對車輛目前行駛環(huán)境的風(fēng)險(xiǎn)特征進(jìn)行了綜合評估。在行駛環(huán)境特征與車輛動力學(xué)特征的基礎(chǔ)上對傳統(tǒng)人工勢場法進(jìn)行了改進(jìn),設(shè)計(jì)了基于虛擬力的局部路徑規(guī)劃與控制決策一體化算法,提升了算法在復(fù)雜動態(tài)環(huán)境下控制的可靠性。最后,利用Carsim/Simulink建立了聯(lián)合仿真環(huán)境,分別對傳統(tǒng)路徑規(guī)劃算法、路徑跟蹤算法與本文提出的路徑?jīng)Q策規(guī)劃一體化算法在典型工況下進(jìn)行仿真。仿真結(jié)果表明,該算法能減小路徑規(guī)劃決策環(huán)節(jié)的時(shí)滯影響,為復(fù)雜動態(tài)環(huán)境下的無人駕駛車輛提供更加合理的控制方法。

    Abstract:

    Path planning and decision-making algorithm is one of the most important research directions of driverless vehicles. However, the delays of the path planning and decision-making algorithms could lead to the inconsistency between sensor information and real driving environment, introducing negative effects on the ability to avoid dangerous state. Classified longitudinal model was established by considering the expected route, kinematics characteristics of environmental traffic participants and vehicles to determine the safety condition of vehicle. Also, a lateral safety space model was established to determine whether it was safe to change lane. Based on the safety model, combining the environmental and vehicle dynamic characteristics, an integrated algorithm of local path planning and decision-making algorithm was provided to improve the performance of the algorithm in complex dynamic environment. In the model, the influence of environmental information was represented with artificial force such as global planning gravitation, lane changing gravitation, forward obstacle repulsion and sensor occluded scenes repulsion. Gravitations represented attractive factors’ influence and repulsions represented repulsive factors’ influence of environment. Finally, co-simulations based on Carsim/Simulink was established to analyze the delay of traditional algorithm and algorithm proposed under various typical conditions. Results showed that the proposed algorithm can reduce the time-delay effect of path planning and decision-making, and provide better control for unmanned vehicle control in complex dynamic environment.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

袁朝春,翁爍豐,何友國,SHEN Jie,陳龍,王桐.基于改進(jìn)人工勢場法的路徑規(guī)劃決策一體化算法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(9):394-403. YUAN Chaochun, WENG Shuofeng, HE Youguo, SHEN Jie, CHEN Long, WANG Tong. Integration Algorithm of Path Planning and Decision-making Based on Improved Artificial Potential Field[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(9):394-403.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-05-23
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-09-10
  • 出版日期: