亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)AlexNet的廣域復(fù)雜環(huán)境下遮擋獼猴桃目標(biāo)識(shí)別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

陜西省科技統(tǒng)籌創(chuàng)新工程計(jì)劃項(xiàng)目(2015KTCQ02-12)


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為了提高獼猴桃采摘機(jī)器人的工作效率和對(duì)獼猴桃復(fù)雜生長(zhǎng)環(huán)境的適應(yīng)性,識(shí)別廣域復(fù)雜環(huán)境下相互遮擋的獼猴桃目標(biāo),采用Im-AlexNet為特征提取層的Faster R-CNN目標(biāo)檢測(cè)算法,通過(guò)遷移學(xué)習(xí)微調(diào)AlexNet網(wǎng)絡(luò),修改全連接層L6、L7的節(jié)點(diǎn)數(shù)為768和256,以解決晴天(白天逆光、側(cè)逆光)、陰天及夜間補(bǔ)光條件下的廣域復(fù)雜環(huán)境中獼猴桃因枝葉遮擋或部分果實(shí)重疊遮擋所導(dǎo)致的識(shí)別精度較低等問(wèn)題。采集廣域復(fù)雜環(huán)境中晴天逆光、晴天側(cè)逆光、陰天和夜間補(bǔ)光條件下存在遮擋情況的4類樣本圖像共1823幅,建立試驗(yàn)樣本數(shù)據(jù)庫(kù)進(jìn)行訓(xùn)練并測(cè)試。試驗(yàn)結(jié)果表明:該方法對(duì)晴天逆光、晴天側(cè)逆光、陰天和夜間補(bǔ)光條件下存在遮擋情況的圖像識(shí)別精度為96.00%,單幅圖像識(shí)別時(shí)間約為1s。在相同數(shù)據(jù)集下,Im-AlexNet網(wǎng)絡(luò)識(shí)別精度比LeNet、AlexNet和VGG16 3種網(wǎng)絡(luò)識(shí)別精度的平均值高出5.74個(gè)百分點(diǎn)。說(shuō)明該算法能夠降低獼猴桃果實(shí)漏識(shí)別率和誤識(shí)別率,提高了識(shí)別精度。該算法能夠應(yīng)用于獼猴桃采摘機(jī)器人對(duì)廣域復(fù)雜環(huán)境下枝葉遮擋或部分果實(shí)重疊遮擋的準(zhǔn)確識(shí)別。

    Abstract:

    To improve the applicability and efficiency of scaffolding cultivation kiwifruit harvesting robot in orchard, an efficient and accurate recognition method for multiple clusters characteristics of kiwifruits under farview and occlusion environment conditions were researched. Faster R-CNN was proposed for detecting kiwifruit. The Im-AlexNet model was used to recognize the farview and occluded fruit image, including the sunny backlight, sunny rembrandt light, cloudy, night with illumination condition. In addition, there was more obstructive among fruit clusters and branches and leaves of fruit trees. By modifying the number of nodes in full connection layer of AlexNet model by transfer learning, finetuning the number of nodes full connection layer L6, L7 to 768 and 256. The feature extraction of kiwifruit was more accurate, and the recognition result of occluded image of fruit contour was obtained. Through the recognition of 1823 multicluster kiwifruit images trained by Im-AlexNet, the experimental results indicated that the average precision (AP) of farview and occluded complex condition images was 96.00%, and the recognition speed reached 1s. By comparing with LeNet、AlexNet、VGG16 models of training the same datasets, the AP of Im-AlexNet was 5.74 percentage points higher than those of Faster R-CNN network, and the rate of false recognition and missing recognition of kiwifruit was reduced by Im-AlexNet. It was proved that deep learning can solve the problem of recognition results of farview complex weather and occluded fruit, and kiwifruit harvesting robot was suitable for kiwifruit detection in complex environment, it can also be applied to other farview multitarget and partially occluded target recognition.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

穆龍濤,高宗斌,崔永杰,李凱,劉浩洲,傅隆生.基于改進(jìn)AlexNet的廣域復(fù)雜環(huán)境下遮擋獼猴桃目標(biāo)識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(10):24-34. MU Longtao, GAO Zongbin, CUI Yongjie, LI Kai, LIU Haozhou, FU Longsheng.[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(10):24-34.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-20
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-10-10
  • 出版日期: 2019-10-10
文章二維碼