亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于可見/近紅外高光譜的八角茴香與莽草無損鑒別
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國家自然科學(xué)基金面上項(xiàng)目(31772062)和國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018YFC1603500)


Nondestructive Identification of Star Anise and Shikimmi by Visible/Near Infrared Hyperspectral Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    基于高光譜成像技術(shù)提出了一種八角茴香與其偽品莽草的快速鑒別方法。實(shí)驗(yàn)采集400~1000nm范圍的高光譜數(shù)據(jù),依據(jù)樣本和背景像素點(diǎn)的光譜特征差異,選擇850nm和450nm下的圖像并進(jìn)行差運(yùn)算,結(jié)合閾值法去除背景信息,利用線性拉伸去除樣本高度引入的陰影噪聲像素點(diǎn),再結(jié)合二值圖像區(qū)域標(biāo)記法從樣本高光譜數(shù)據(jù)中自動(dòng)提取其平均光譜數(shù)據(jù);利用平均光譜數(shù)據(jù),采用連續(xù)投影算法(Successive projections algorithm, SPA)選取了4個(gè)最優(yōu)波長(zhǎng):533、617、665、807nm;基于最優(yōu)波長(zhǎng)下的光譜數(shù)據(jù),建立了偏最小二乘判別(Partial least square discrimination analysis,PLSDA)模型,模型對(duì)鑒別八角和莽草的總體準(zhǔn)確率為98.4%;利用所建多光譜模型對(duì)外部驗(yàn)證集數(shù)據(jù)進(jìn)行預(yù)測(cè),總體分類準(zhǔn)確率為97.9%。利用常規(guī)圖像處理技術(shù)同時(shí)對(duì)外部驗(yàn)證集數(shù)據(jù)進(jìn)行處理,并對(duì)兩種技術(shù)方法進(jìn)行了比較,結(jié)果表明,依托高光譜成像技術(shù)建立的八角和莽草辨識(shí)的多光譜分析方法簡(jiǎn)單、高效,易于實(shí)現(xiàn)動(dòng)態(tài)在線便攜式檢測(cè)。

    Abstract:

    Based on hyperspectral imaging technique, an identification method of star anise and its counterfeit shikimmi was proposed. The hyperspectral data in the range of 400~1000nm were collected and analyzed. Firstly, according to the different spectral characteristics of samples and background pixels, images at 850nm and 450nm were selected and subtracted, and background information was removed by threshold method. Linear stretching method was further used to remove shadow noise pixels due to sample height. Combined with the region labeling method of binary image, the automatic extraction of average spectral data from sample hyperspectral data was realized. Then based on average spectral data, four optimal wavelengths were selected by successive projections algorithm (SPA), i.e., 533nm, 617nm, 665nm and 807nm. Based on the spectral data at the optimal wavelength, a partial least square discrimination analysis (PLSDA) model was established. The classification accuracy of star anise and shikimmi was 98.4%. Using the established multi-spectral model to predict the external validation set data, the overall classification accuracy was 97.9%, and the visualization results were good. Finally, the conventional image processing technology was also used to process the same external verification set data, and the results and advantages of the two methods were compared. The results showed that the multispectral analysis method based on hyperspectral imaging technique was simple, efficient and easy to realize dynamic on-line or portable detection applications. The proposed method can provide a theoretical basis for the development of on-line or portable detection instruments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王偉,趙昕,褚璇,鹿瑤,賈貝貝.基于可見/近紅外高光譜的八角茴香與莽草無損鑒別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(11):373-379. WANG Wei, ZHAO Xin, CHU Xuan, LU Yao, JIA Beibei. Nondestructive Identification of Star Anise and Shikimmi by Visible/Near Infrared Hyperspectral Images[J]. Transactions of the Chinese Society for Agricultural Machinery,2019,50(11):373-379.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-07-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2019-11-10
  • 出版日期: