亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

水稻收獲作業(yè)視覺(jué)導(dǎo)航路徑提取方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700400、2017YFD0700405)、國(guó)家油菜產(chǎn)業(yè)體系專項(xiàng)(CARS-12)和農(nóng)業(yè)部科研杰出人才及創(chuàng)新團(tuán)隊(duì)項(xiàng)目


Visual Navigation Path Extraction Method in Rice Harvesting
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)水稻收獲視覺(jué)導(dǎo)航中的路徑規(guī)劃問(wèn)題,提出一種水稻收獲作業(yè)視覺(jué)導(dǎo)航路徑提取方法。通過(guò)相機(jī)標(biāo)定獲取畸變參數(shù)矯正原始圖像,并進(jìn)行高斯濾波,采用基于2R-G-B超紅特征模型的綜合閾值法進(jìn)行圖像二值化分割,并對(duì)二值圖像進(jìn)行形態(tài)學(xué)的開(kāi)-閉運(yùn)算,抑制噪聲干擾,根據(jù)圖像灰度垂直投影值動(dòng)態(tài)設(shè)定感興趣區(qū)域,水平掃描獲取作物線擬合關(guān)鍵點(diǎn),最后采用多段三次B樣條曲線擬合法提取水稻待收獲區(qū)域邊界線。室內(nèi)試驗(yàn)表明,采用本文所提出的圖像處理方法提取的圖像中距離信息平均誤差為9.9mm、偏差率為2.0%,角度信息平均誤差為0.77°、誤差率2.7%。在順光、逆光、強(qiáng)光、弱光4種光線環(huán)境下,對(duì)中粳798和臨稻20兩種作物進(jìn)行了收獲路徑提取田間試驗(yàn),以像素誤差、距離誤差、相對(duì)誤差和標(biāo)準(zhǔn)差為評(píng)價(jià)指標(biāo),對(duì)比了不同光線下的路徑提取結(jié)果,試驗(yàn)結(jié)果表明,對(duì)于中粳798的收獲圖像,4種光線環(huán)境下15個(gè)關(guān)鍵點(diǎn)的平均像素誤差為28.7像素,平均距離誤差39.7mm,平均相對(duì)誤差2.7%;強(qiáng)光環(huán)境平均像素誤差最小,為26.2像素;弱光環(huán)境平均距離誤差最小,為23.9mm;強(qiáng)光環(huán)境平均相對(duì)誤差最小,為2.0%;順光環(huán)境穩(wěn)定性最好,標(biāo)準(zhǔn)差為6.8像素。對(duì)于臨稻20的收獲圖像,4種光線環(huán)境下15個(gè)關(guān)鍵點(diǎn)的平均像素誤差36.5像素,平均距離誤差45.0mm,平均相對(duì)誤差2.8%,在逆光環(huán)境下的平均像素誤差、平均距離誤差和平均相對(duì)誤差均最小,分別為29.5像素、36.9mm和2.3%,穩(wěn)定性也最好,標(biāo)準(zhǔn)差為10.8像素。單幀圖像平均處理時(shí)間38ms。本研究可為田間作物線檢測(cè)和收獲作業(yè)的自動(dòng)導(dǎo)航提供參考。

    Abstract:

    Aiming at the path planning in rice harvesting visual navigation, a method for extracting the boundary line of rice harvesting area was presented. Camera distortions were eliminated by camera calibration. According to the ultra-red characteristics model 2R-G-B, binary images were carried out based on integrated threshold method. Noise was eliminated by using the opening operation and closing operation in morphology. The ROI area was dynamically set according to the image grayscale vertical projection value. Crop line fitting key points were obtained by horizontal scanning. The boundary line of rice to be harvested was extracted by multi-segment cubic B-spline curve fitting method. Laboratory tests showed that the average error of distance information extracted based on the proposed image processing method was 9.9mm, the deviation rate was 2.0%, the average error of angle information was 0.77°, and the error rate was 2.7%. The field experiment of harvesting path extraction was carried out for two crops, Zhongjing 798 and Lindao 20 under four different light environments,direct sunlight, backlight, strong light and weak light,respectively. For the harvest image of Zhongjing 798, the average pixel error of crop line key point recognition was 28.7 pixel, the average distance error was 39.7mm, and the average relative error was 2.7%. The minimum average pixel error was 26.2 pixel in strong light, the minimum average distance error was 23.9mm in weak light, the minimum average relative error was 2.0% in strong light, in direct sunlight the algorithm was most stable with a standard deviation of 6.8 pixel. For the harvested image of Lindao 20, the average pixel error of crop line key point recognition was 36.5 pixel, the average distance error was 45.0mm, and the average relative error was 2.8%. All minimum value of each indicator was in backlight, the minimum average pixel error was 29.5 pixel, the minimum average distance error was 36.9mm, the minimum average relative error was 2.3% and the minimum standard deviation was 10.8 pixel. The average processing time of single frame image was 38ms, which can provide reference for crop line detection and automated navigation in harvesting.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

關(guān)卓懷,陳科尹,丁幼春,吳崇友,廖慶喜.水稻收獲作業(yè)視覺(jué)導(dǎo)航路徑提取方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(1):19-28. GUAN Zhuohuai, CHEN Keyin, DING Youchun, WU Chongyou, LIAO Qingxi. Visual Navigation Path Extraction Method in Rice Harvesting[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):19-28.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-09-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-01-10
  • 出版日期:
文章二維碼