亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于深度學(xué)習(xí)的大豆生長期葉片缺素癥狀檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣東省重點研發(fā)計劃項目(2019B020223002)、廣東省自然科學(xué)基金項目(2018A030313330)、廣東省省級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(201810564098)和廣東省大學(xué)生科技創(chuàng)新培育專項資金項目(Pdjh2018b0079)


Leaf Deficiency Symptoms Detection Method of Soybean Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了檢測作物葉片缺素,提出了一種基于神經(jīng)網(wǎng)絡(luò)的大豆葉片缺素視覺檢測方法。在對大豆缺素葉片進行特征分析后,采用深度學(xué)習(xí)技術(shù),利用Mask R-CNN模型對固定攝像頭采集的葉片圖像進行分割,以去除背景特征,并利用VGG16模型進行缺素分類。首先通過攝像頭采集水培大豆葉片圖像,對大豆葉片圖像進行人工標記,建立大豆葉片圖像分割任務(wù)的訓(xùn)練集和測試集,通過預(yù)訓(xùn)練確定模型的初始參數(shù),并使用較低的學(xué)習(xí)率訓(xùn)練Mask R-CNN模型,訓(xùn)練后的模型在測試集上對背景遮擋的大豆單葉片和多葉片分割的馬修斯相關(guān)系數(shù)分別達到了0.847和0.788。通過預(yù)訓(xùn)練確定模型的初始參數(shù),使用訓(xùn)練全連接層的方法訓(xùn)練VGG16模型,訓(xùn)練的模型在測試集上的分類準確率為89.42%。通過將特征明顯的葉片歸類為兩類缺氮特征和4類缺磷特征,分析討論了模型的不足之處。本文算法檢測一幅100萬像素的圖像平均運行時間為0.8s,且對復(fù)雜背景下大豆葉片缺素分類有較好的檢測效果,可為農(nóng)業(yè)自動化生產(chǎn)中植株缺素情況估計提供技術(shù)支持。

    Abstract:

    In order to detect plant leaf element deficiency, a visual detection method of soybean leaf element deficiency based on neural network was proposed. After analyzing the characteristics of soybean deficient leaves, deep learning technology was used. The Mask R-CNN model was used to segment the leaf images collected by a fixed camera, and the VGG16 model was adopted to classify the deficient leaves. Firstly, after collecting hydroponic soybean images, the outline of soybean leaves was marked manually in the images, establishing training set and test set of segmentation task. Through pre-training, the initial parameters of the Mask R-CNN model were determined, and then using lower learning rate to train the model. For segmentation task on single leaf images and on multiple leaves on a complex background in the test set, the Matthews correlation coefficient (MCC) of the final trained model reached 0.847 and 0.788 respectively. The training set and test set of the soybean leaf image classification task were established by segmenting the leaves through the trained Mask R-CNN network and manually marking them. The initial parameters of the VGG16 model were determined through pre-training, and then the whole connection layers of the VGG16 model were replaced before training to adapt to the leaf classification task. The classification accuracy of the final trained model on the test set was 89.42%. When analyzing the result, the leaves with obvious deficiency features were classified into two types of nitrogen deficiency and four types of phosphorus deficiency to discuss the inadequacy of the method. The average running time of the algorithm to detect a picture of 1 million pixels was 0.8s. The algorithm had a good detection result on the classification of soybean leaf deficiency under complex background, which can provide technical support for the estimation of plant deficiency in agricultural automation production.

    參考文獻
    相似文獻
    引證文獻
引用本文

熊俊濤,戴森鑫,區(qū)炯洪,林筱蕓,黃瓊海,楊振剛.基于深度學(xué)習(xí)的大豆生長期葉片缺素癥狀檢測方法[J].農(nóng)業(yè)機械學(xué)報,2020,51(1):195-202. XIONG Juntao, DAI Senxin, OU Jionghong, LIN Xiaoyun, HUANG Qionghai, YANG Zhen’gang. Leaf Deficiency Symptoms Detection Method of Soybean Based on Deep Learning[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):195-202.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-05-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-01-10
  • 出版日期:
文章二維碼