亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多特征融合的樹干快速分割算法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

江蘇省重點研發(fā)計劃項目(BE2018372)、江蘇省自然科學基金項目(BK20181443)、江蘇省國際科技合作項目(BZ2017067)、江蘇高校“青藍工程”項目、鎮(zhèn)江市重點研發(fā)計劃項目(NY2018001)和江蘇省三新工程項目(NJ2018-12)


Fast Segmentation Algorithm of Tree Trunks Based on Multi-feature Fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對傳統(tǒng)的樹干分割算法存在分割精度低、實時性差的問題,提出了一種融合深度特征和紋理特征的樹干快速分割算法。首先,通過Realsense深度攝像頭采集樹干彩色圖像和深度圖像;隨后,采用超像素算法對彩色圖像進行分割,并融合深度和紋理相近的相鄰超像素塊,最后對深度圖像進行寬度檢測,并對寬度在閾值范圍內(nèi)的物體所屬的超像素塊進行色調(diào)匹配,區(qū)分樹干與非樹干。在室內(nèi)和室外植株實驗中分別運用本文算法、GrabCut算法與K-均值算法進行樹干分割,本文算法的平均召回率和平均準確率分別為87.6%和95.0%,GrabCut算法分別為78.0%和92.8%,K-均值算法分別為80.2%和89.1%;本文算法平均耗時為0.20s,GrabCut算法為0.66s,K-均值算法為4.42s。實驗結(jié)果表明,本文算法的快速分割效果較好,在保證分割精度的同時,簡化了識別過程,加快了分割速度,能夠應用于室內(nèi)和室外樹干的分割。

    Abstract:

    Accurate identification of orchard trunks can provide effective information for orchard robot localisation and navigation. The traditional tree trunk segmentation algorithm has low segmentation accuracy and poor real time performance. To solve this problem, a fast segmentation of tree trunks based on depth and texture features was proposed to improve segmentation accuracy and real time performance. Firstly, a Realsense depth camera was used to capture color and depth images of tree trunks. Then, a superpixel segmentation algorithm was proposed to segment color images, and fuse adjacent superpixel blocks with similar depth and texture values. Finally, plant trunks were distinguished from notrunk targets in candidate superpixel blocks based on trunk width threshold setting in depth images and hue value matching in color images. Both indoor and outdoor experiments were conducted to compare the proposed tree trunk segmentation algorithm with traditional GrabCut algorithm and K-means algorithm. The average recall rate and average accuracy of the new algorithm were 87.6% and 95.0%, respectively, while that of the GrabCut algorithm was only 78.0% and 92.8%, respectively, and the K-means algorithm was 80.2% and 89.1%, respectively. Meanwhile, the average time of the proposed algorithm was 0.20s, while the GrabCut algorithm was 0.66s, and the K-means algorithm was 4.42s. The experimental results showed that the proposed algorithm was effective in fast segmentation, and can be applied to tree trunk segmentation.

    參考文獻
    相似文獻
    引證文獻
引用本文

劉慧,朱晟輝,沈躍,湯金華.基于多特征融合的樹干快速分割算法[J].農(nóng)業(yè)機械學報,2020,51(1):221-229. LIU Hui, ZHU Shenghui, SHEN Yue, TANG Jinhua. Fast Segmentation Algorithm of Tree Trunks Based on Multi-feature Fusion[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(1):221-229.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-06-05
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-01-10
  • 出版日期:
文章二維碼