亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于人工嗅覺系統(tǒng)的土壤有機質檢測方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD070030201)和吉林省科技計劃項目(20190302116GX)


Soil Organic Matter Detection Method Based on Artificial Olfactory System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)土壤有機質快速、準確的測量,提出了一種基于人工嗅覺的土壤有機質含量檢測方法。首先,由不同溫度控制的10個氣體傳感器所構成的陣列對土壤樣品氣體進行采集;然后,提取每個傳感器響應曲線上的7個特征(包括最大值、最小值、平均值、平均微分系數(shù)、響應面積、第30秒的瞬態(tài)值和第60秒的瞬態(tài)值),構建嗅覺特征空間;對特征空間優(yōu)化后,采用回歸算法建立預測模型。為減小不同測定算法、異常樣本以及冗余特征對模型預測性能的影響,在應用蒙特卡羅抽樣(Monte Carlo sampling,MCS)法剔除異常樣本的基礎上,采用主成分分析(Principal component analysis,PCA)法對特征空間進行降維處理,評估了包括偏最小二乘法回歸(Partial least square regression,PLSR)、支持向量機回歸(Support vector machine regression,SVR)和BP神經(jīng)網(wǎng)絡(Back propagation neural network,BPNN)等3種建模方法對土壤有機質含量的預測性能,選用決定系數(shù)R2、均方根誤差(RMSE)和預測偏差比(RPD)評價各模型的預測性能。測試集驗證結果表明,PLSR、SVR和BPNN這3種模型的預測值和樣本的觀測值之間的R2分別為0.86、0.91和0.85,RMSE分別為2.49、2.05、2.68g/kg,RPD分別為2.49、3.02和2.32。SVR模型的預測性能高于PLSR模型和BPNN模型,可對土壤有機質含量進行準確預測。

    Abstract:

    In order to measure soil organic matter content quickly and accurately, a method based on artificial olfactory was proposed. Firstly, the response curves of soil gas were collected by an array composed of 10 gas sensors controlled at different temperatures. And then seven features, including the maximum value, minimum value, mean value, mean differential coefficient value, response area value, transient value at the 30th second and transient value at the 60th second were extracted from each sensor response curves to build an olfactory feature space. Finally, the prediction model was established by using the regression algorithm. To reduce the influence of different regression algorithms, abnormal samples and redundancy characteristics on the prediction performance of the model, the Monte Carlo sampling (MCS) method was used to eliminate abnormal samples, and the principal component analysis (PCA) method was used to reduce the dimension of olfactory feature space. Moreover, three modeling methods, including partial least square regression (PLSR), support vector machine regression (SVR) and back propagation neural network (BPNN), were used to predict soil organic matter content. And the predictive performance of each model were evaluated by coefficient of determination (R2), root mean square error (RMSE) and ratio of prediction derivation (RPD). The results showed that the R2 values of PLSR, SVR and BPNN were 0.86, 0.91 and 0.85, respectively;the RMSE values were 2.49g/kg, 2.05g/kg and 2.68g/kg, respectively;and the RPD values were 2.49, 3.02 and 2.32, respectively. The prediction performance of SVR model was higher than that of PLSR model and BPNN model, which can accurately predict the organic matter content. The results can provide a reference method for the prediction of soil organic matter. 

    參考文獻
    相似文獻
    引證文獻
引用本文

朱龍圖,李名偉,夏曉蒙,黃東巖,賈洪雷.基于人工嗅覺系統(tǒng)的土壤有機質檢測方法研究[J].農業(yè)機械學報,2020,51(3):171-179. ZHU Longtu, LI Mingwei, XIA Xiaomeng, HUANG Dongyan, JIA Honglei. Soil Organic Matter Detection Method Based on Artificial Olfactory System[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(3):171-179.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-12-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-03-10
  • 出版日期: