亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農(nóng)業(yè)信息成像感知與深度學(xué)習(xí)應(yīng)用研究進展
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(31971785、31501219)、中央高校基本科研業(yè)務(wù)費專項資金項目(2020TC036)、中國農(nóng)業(yè)大學(xué)研究生教學(xué)改革建設(shè)項目(JG2019004)和中國農(nóng)業(yè)大學(xué)實踐教學(xué)基地建設(shè)項目(ZYXW037)


Research Progress of Image Sensing and Deep Learning in Agriculture
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農(nóng)業(yè)信息感知與準(zhǔn)確的數(shù)據(jù)分析是智慧農(nóng)業(yè)定量決策與管理服務(wù)的基礎(chǔ)?,F(xiàn)代農(nóng)業(yè)中彩色、可見光-近紅外光譜、3D與熱紅外等多源和多維度的成像感知手段提供了豐富的數(shù)據(jù)源,傳統(tǒng)研究中圍繞顏色、形態(tài)、紋理、反射光譜等特征展開分析,由于樣本量和特征抽象層級的局限性,對復(fù)雜背景變化及未知樣本檢測時,還存在噪聲抑制魯棒性不足、識別與檢測模型精度不高等問題。深度學(xué)習(xí)(Deep learning,DL)是機器學(xué)習(xí)的分支之一,結(jié)合神經(jīng)網(wǎng)絡(luò)通過組合底層特征形成抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征與屬性,在圖像目標(biāo)識別與檢測中其模型檢測精度與泛化能力比傳統(tǒng)方法均有所提升。因而,DL技術(shù)在農(nóng)業(yè)信息檢測中的應(yīng)用日益增多。為了深入分析應(yīng)用DL技術(shù)驅(qū)動智慧農(nóng)業(yè)繼續(xù)發(fā)展的潛力和方向,本文從農(nóng)業(yè)信息成像感知的數(shù)據(jù)源與DL技術(shù)應(yīng)用相結(jié)合的角度出發(fā),分別以植物識別與檢測、病蟲害診斷與識別、遙感區(qū)域分類與監(jiān)測、果實在體檢測與產(chǎn)品分級、動物識別與姿態(tài)檢測5個研究方向總結(jié)概括DL在農(nóng)業(yè)信息檢測中最新的應(yīng)用研究成果,展望需要加強的方面,以提升對應(yīng)用DL開展農(nóng)業(yè)信息檢測過程的理解,促進農(nóng)業(yè)信息感知技術(shù)的發(fā)展。

    Abstract:

    Accurate data sensing and processing are basic of quantitative decision-making in smart agriculture management. Image sensing provide multi-dimensional information for agriculture detection, such as color, visible-near infrared spectroscopy, 3D and thermal radiation. The traditional way to analyze these images focuses on the characteristics of color, morphology, texture, spectral reflection and so on. The limitations of sample mounts and extracted features always lead to the problems such as insufficient noise reduction and low accuracy of the recognition and detection models, especially for complex background changes and unknown samples. Deep learning (DL), a subset of machine learning approaches, emerged and combined neural networks to extract and represent the high-level features of image. It provided a versatile tool to assimilate and explore distribution and features from heterogeneous data. It could help to build reliable predictions of complex and uncertain phenomena in agriculture. In order to explain the application potential and further direction, the applied sensors, specific models and dataset sources were examined from five areas, including plant recognition and detection, disease and pest identification, remote sensing classification and monitoring, products detection and grading, and animal detection. Finally, several avenues of researches were outlined.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

孫紅,李松,李民贊,劉豪杰,喬浪,張瑤.農(nóng)業(yè)信息成像感知與深度學(xué)習(xí)應(yīng)用研究進展[J].農(nóng)業(yè)機械學(xué)報,2020,51(5):1-17. SUN Hong, LI Song, LI Minzan, LIU Haojie, QIAO Lang, ZHANG Yao. Research Progress of Image Sensing and Deep Learning in Agriculture[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(5):1-17.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-03-09
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-05-10
  • 出版日期:
文章二維碼