亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)型YOLO的復(fù)雜環(huán)境下番茄果實(shí)快速識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家自然科學(xué)基金項(xiàng)目(31601794)、寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2018BBF02024)和寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃重大科技項(xiàng)目(2017BY067)


Fast Recognition Method for Tomatoes under Complex Environments Based on Improved YOLO
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為實(shí)現(xiàn)溫室環(huán)境下農(nóng)業(yè)采摘機(jī)器人對番茄果實(shí)的快速、精確識別,提出了一種改進(jìn)型多尺度YOLO算法(IMSYOLO)。對YOLO網(wǎng)絡(luò)模型進(jìn)行篩選和改進(jìn),設(shè)計(jì)了一種含有殘差模塊的darknet20主干網(wǎng)絡(luò),同時(shí)融合多尺度檢測模塊,構(gòu)建了一種復(fù)雜環(huán)境下番茄果實(shí)快速識別網(wǎng)絡(luò)模型。該網(wǎng)絡(luò)模型層數(shù)較少,能夠提取更多特征信息,且采用多尺度檢測結(jié)構(gòu),同時(shí)返回番茄果實(shí)的類別和預(yù)測框,以此提升番茄果實(shí)檢測速度和精度。采用自制的番茄數(shù)據(jù)集對IMSYOLO模型進(jìn)行測試,并分別對改進(jìn)前后網(wǎng)絡(luò)的檢測性能以及主干網(wǎng)絡(luò)層數(shù)對特征提取能力的影響進(jìn)行了對比試驗(yàn)。試驗(yàn)結(jié)果表明,IMSYOLO模型對番茄圖像的檢測精度為97.13%,準(zhǔn)確率為96.36%,召回率為96.03%,交并比為83.32%,檢測時(shí)間為7.719ms;對比YOLO v2和YOLO v3等網(wǎng)絡(luò)模型,IMSYOLO模型可以同時(shí)滿足番茄果實(shí)檢測的精度和速度要求。最后,通過番茄溫室大棚采摘試驗(yàn)驗(yàn)證了本文模型的可行性和準(zhǔn)確性。

    Abstract:

    In order to implement the fast and accurate recognition of tomatoes for agricultural harvesting robots under greenhouse environments, an improved multiscale YOLO detection algorithm named IMSYOLO was presented. A new backbone network structure, which was named darknet20, with one residual block was designed based on a series of the previous YOLO algorithms, and a multiscale detection structure was utilized simultaneously for the detection algorithm. Therefore, a new kind of neural network model was formed for the fast recognition of tomatoes under complex environments. Due to some features of the method such as the fewer layers required, the larger amount of information extracted, and by using the multiscale structure to return both the detection categories and the bounding boxes, the detection speed and accuracy were improved. IMSYOLO model was tested on our own tomato dataset, and the detection performance of the network before and after the improvement as well as the influence of the variation of the backbone network layers on the feature extraction capacity were analyzed respectively. The test results showed that the proposed method had ideal features with a precision of tomato image detection of 97.13%, an accuracy of 96.36%, a recall rate of 96.03%, an intersection over union (I(xiàn)OU) of 83.32% and a detection time of 7.719ms. Furthermore, compared with YOLO v2, YOLO v3 and some other neural networks mentioned, IMSYOLO can meet the requirements of both detection accuracy and speed. At last, the feasibility of the proposed algorithm applying to the robots was verified by the harvesting tests of the ripe tomatoes under the greenhouse environments.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉芳,劉玉坤,林森,郭文忠,徐凡,張白.基于改進(jìn)型YOLO的復(fù)雜環(huán)境下番茄果實(shí)快速識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(6):229-237. LIU Fang, LIU Yukun, LIN Sen, GUO Wenzhong, XU Fan, ZHANG Bai. Fast Recognition Method for Tomatoes under Complex Environments Based on Improved YOLO[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(6):229-237.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-06-10
  • 出版日期: