亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于雙金字塔網(wǎng)絡(luò)的RGB-D群豬圖像分割方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFD0500506)、中央高校自主創(chuàng)新基金項(xiàng)目(2662018JC003、2662018JC010、2662017JC028)和現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(CARS-35)


RGB-D Segmentation Method for Group Piglets Images Based on Double-pyramid Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)群養(yǎng)豬的視覺追蹤和行為監(jiān)測(cè),針對(duì)豬舍中仔豬因擁擠堆疊等習(xí)性而導(dǎo)致的目標(biāo)個(gè)體粘連、圖像分割困難問題,提出基于雙金字塔網(wǎng)絡(luò)的RGB-D群豬圖像分割方法。該方法基于實(shí)例分割Mask R-CNN框架,在特征提取網(wǎng)絡(luò)(ResNet101)基礎(chǔ)上改進(jìn)成雙金字塔特征提取網(wǎng)絡(luò)。RGB圖像和Depth圖像分別提取特征后進(jìn)行融合,輸入?yún)^(qū)域生成網(wǎng)絡(luò)得到預(yù)選錨(ROI)和共享特征輸入Head網(wǎng)絡(luò),通過類別、回歸和掩模3個(gè)分支,輸出檢測(cè)目標(biāo)的位置和分類結(jié)果,實(shí)現(xiàn)豬舍場(chǎng)景下群養(yǎng)仔豬粘連區(qū)域的有效個(gè)體分割。網(wǎng)絡(luò)模型訓(xùn)練采用2000組圖像樣本,按照4∶1比例隨機(jī)劃分訓(xùn)練集和驗(yàn)證集。試驗(yàn)結(jié)果表明,雙金字塔網(wǎng)絡(luò)(Feature pyramid networks,F(xiàn)PN)能有效解決顏色相近、個(gè)體相似的群豬粘連問題,實(shí)現(xiàn)單個(gè)仔豬區(qū)域的完整分割,分割準(zhǔn)確率達(dá)89.25%,訓(xùn)練GPU占有率為77.57%,與Mask R-CNN和PigNet網(wǎng)絡(luò)分割結(jié)果相比,分割準(zhǔn)確率和分割速度均有較大提高。雙金字塔網(wǎng)絡(luò)模型對(duì)于多種行為狀態(tài)、不同粘連程度的群豬圖像中個(gè)體分割都取得了良好效果,模型泛化性和魯棒性較好,為群養(yǎng)豬的個(gè)體自動(dòng)追蹤提供了新的途徑。

    Abstract:

    Aiming to achieve automatic individual pig’s tracking and monitoring in pig group, an RGB-D image segmentation method based on the double-pyramid network was proposed to solve the segmentation difficulties caused by overlaps and adhesion body areas which were frequently exiting in images because of habits of huddle and crowd in piglets. The method was based on an instance segmentation network Mask R-CNN, modifying its feature extraction network, ResNet101, to a double-pyramid structure. Features were extracted from RGB and Depth images and combined to be inputted into a regional generation network. The network outputted regions of interest (ROI). The combined features and ROIs were then inputted into a head network, which included the classifications and regression and mask branches and outputted the locations of pigs and results of classification. Eventually, the individual pigs were segmented from images according to the outputs. The double-pyramid network was trained using 2000 groups of images, splitting to a training set and a validation set in a ratio of 4∶1 randomly. Experimental results showed that the double-pyramid network (Feature pyramid networks, FPN) can effectively address the segmentation for group pig images of adhesive pigs, and acquire the complete individual pig areas, the segmentation accuracy rate was up to 8925%. During the training process, the GPU used rate was lower to 7757%, the FPN outperformed the Mask R-CNN and PigNet networks both in the segmentation accuracy rate and running speed. The double-pyramid network represented its generalization and robustness on the segmentation for multi-behaviors and diversified adhesions in pig group images, which provided a new approach to automatically track individual pig in group pigs.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

高云,廖慧敏,黎煊,雷明剛,余梅,李小平.基于雙金字塔網(wǎng)絡(luò)的RGB-D群豬圖像分割方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(7):36-43. GAO Yun, LIAO Huimin, LI Xuan, LEI Minggang, YU Mei, LI Xiaoping. RGB-D Segmentation Method for Group Piglets Images Based on Double-pyramid Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):36-43.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-10-28
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼