亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無人機高光譜遙感數(shù)據(jù)的冬小麥產(chǎn)量估算
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金項目(41601346、41871333)和廣東省重點領(lǐng)域研發(fā)計劃項目(2019B020214002)


Winter Wheat Yield Estimation Based on UAV Hyperspectral Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了準確和高效地預測作物產(chǎn)量,以冬小麥為研究對象,利用無人機遙感平臺搭載高光譜相機,獲取了冬小麥各生育期的無人機影像。根據(jù)高光譜具有較多的光譜信息且存在特有的紅邊區(qū)域的特點,選取了9種植被指數(shù)和5種紅邊參數(shù)。首先,分析植被指數(shù)和紅邊參數(shù)與產(chǎn)量的相關(guān)性,優(yōu)選5種植被指數(shù)和2種紅邊參數(shù)用于構(gòu)建產(chǎn)量估算模型;然后,構(gòu)建了不同生育期的3種產(chǎn)量估算模型:單參數(shù)線性回歸模型、基于植被指數(shù)并使用偏最小二乘回歸方法模型、基于植被指數(shù)結(jié)合紅邊參數(shù)并使用偏最小二乘回歸方法模型;最后利用3種模型分別估算冬小麥產(chǎn)量。結(jié)果表明:4個生育期內(nèi),大部分植被指數(shù)和紅邊參數(shù)與產(chǎn)量呈現(xiàn)極顯著相關(guān)性;拔節(jié)期、挑旗期、開花期與灌漿期構(gòu)建的單參數(shù)線性回歸模型中表現(xiàn)最佳的參數(shù)分別為REP、Dr/Drmin、GNDVI與GNDVI;利用偏最小二乘回歸方法提高了產(chǎn)量估算精度,以植被指數(shù)結(jié)合紅邊參數(shù)為因子構(gòu)建的模型提高了產(chǎn)量估算效果(優(yōu)于以植被指數(shù)為因子構(gòu)建的產(chǎn)量模型)。本研究可為無人機高光譜估算作物產(chǎn)量提供參考。

    Abstract:

    In order to predict crop yields efficiently and accurately, winter wheat was taken as the research object, a UAV remote sensing platform was used, and a hyperspectral camera was carried to obtain UAV images of each growth stage to estimate crop yields. In order to accurately predict the yield, according to the characteristics of hyperspectral with more spectral information and the unique red edge area, nine vegetation indices and five red edge parameters were selected. The correlation between vegetation indices and red edge parameters and yield was analyzed. Five vegetation indices and two red edge parameters were selected for constructing yield estimation models, and then three yield estimation models with different growth stages were constructed: single-parameter linear regression model, model based on vegetation indices using partial least squares regression method, model based on vegetation indices combined with red edge parameters and using partial least squares regression method, and using different models to estimate winter wheat yield. The results showed that most of the vegetation indices and red edge parameters of the four growing stages were very significantly correlated with yield. Single-parameter linear regression models constructed at the jointing, flagging, flowering and filling stages, with the best performing parameters being REP, Dr/Drmin, GNDVI and GNDVI. The partial least squares regression method was used to improve the accuracy of yield estimation. At the same time, the model constructed with the vegetation indices combined with the red edge parameters as the factor improved the yield estimation effect (better than the yield model constructed with the vegetation indices as the factor). The research result provided a reference for UAV hyperspectral to estimate crop yield in agriculture.

    參考文獻
    相似文獻
    引證文獻
引用本文

陶惠林,徐良驥,馮海寬,楊貴軍,楊小冬,牛亞超.基于無人機高光譜遙感數(shù)據(jù)的冬小麥產(chǎn)量估算[J].農(nóng)業(yè)機械學報,2020,51(7):146-155. TAO Huilin, XU Liangji, FENG Haikuan, YANG Guijun, YANG Xiaodong, NIU Yachao. Winter Wheat Yield Estimation Based on UAV Hyperspectral Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(7):146-155.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-01
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-07-10
  • 出版日期:
文章二維碼