亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多層EESP深度學(xué)習(xí)模型的農(nóng)作物病蟲害識別方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

中國博士后科學(xué)基金項目(2017M611737)和國家自然科學(xué)基金面上項目(61772242、61572239)


Crop Pests and Diseases Recognition Method Based on Multi-level EESP Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了提取圖像高層語義特征、解決各種植物病蟲害圖像尺寸不相同的問題,提出了多層次增強(qiáng)高效空間金字塔(Extremely efficient spatial pyramid, EESP)卷積深度學(xué)習(xí)模型。首先,對圖像進(jìn)行預(yù)處理;其次,構(gòu)建多層融合EESP網(wǎng)絡(luò)模型,該模型通過對每層設(shè)置不同的空洞率進(jìn)行空洞卷積,選擇性地提取不同層次的特征信息,通過融合各層信息獲得各種農(nóng)作物病蟲害圖像的不同特征;最后,通過Softmax分類方法實現(xiàn)農(nóng)作物病蟲害識別。數(shù)據(jù)集包括10種農(nóng)作物的61種病蟲害類別,迭代訓(xùn)練300次,得到本文方法Top1分類準(zhǔn)確率最高達(dá)到了88.4%,且采用三階EESP模型達(dá)到了最佳效果。

    Abstract:

    With the rapid development of Internet of Things and artificial intelligence, the detection and treatment of crop diseases are gradually developing towards intelligence. Using computer vision methods to identify crop diseases accurately and efficiently was of great significance to ensure the normal growth of crops. In order to extract the highlevel semantic features of images and solve the problem of different image sizes of various plant diseases and insect pests, a multilevel extremely efficient spatial pyramid (EESP) model based on deep learning was proposed. Firstly, the image was preprocessed, and then the proposed model was constructed. In order to extract characteristic information of different scales, the cavity ratio was different in each layer. By integrating the information of each layer, different characteristics of various crop pest images were obtained. Finally, crop pests and diseases were identified through image classification method. The data set included 61 pests and disease categories of 10 crops. After 300 epochs training, the experiments showed that the Top1 accuracy of the proposed model reached 88.4%, which was effectively improved by about 3 percentage points compared with that of traditional methods, and it was found that using the threelayer EESP model can obtain the best effect. It had certain practical value and can be applied in actual scenarios.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

宋余慶,謝熹,劉哲,鄒小波.基于多層EESP深度學(xué)習(xí)模型的農(nóng)作物病蟲害識別方法[J].農(nóng)業(yè)機(jī)械學(xué)報,2020,51(8):196-202. SONG Yuqing, XIE Xi, LIU Zhe, ZOU Xiaobo. Crop Pests and Diseases Recognition Method Based on Multi-level EESP Model[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(8):196-202.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2019-11-14
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-08-10
  • 出版日期: 2020-08-10