亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

高遮擋環(huán)境下玉米植保機(jī)器人作物行間導(dǎo)航研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

安徽省重點(diǎn)研究與開(kāi)發(fā)計(jì)劃項(xiàng)目(202004h07020009)、安徽省高校自然科學(xué)研究重點(diǎn)項(xiàng)目(KJ2019A0173)和安徽省教育廳協(xié)同創(chuàng)新項(xiàng)目(GXXT-2019-036)


Inter-rows Navigation Method for Corn Crop Protection Vehicles under High Occlusion Environment
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    玉米小型植保機(jī)器人可以有效解決病蟲(chóng)害防治難的問(wèn)題,然而玉米生長(zhǎng)中后期作物行間葉片縱橫交錯(cuò)會(huì)嚴(yán)重遮擋可通行區(qū)域,給植保機(jī)器人沿壟間導(dǎo)航造成了極大的困難。本文將16線激光雷達(dá)搭載在植保機(jī)器人頂端作為感知單元,實(shí)現(xiàn)玉米行間信息獲取并提取植保機(jī)器人可通行區(qū)域識(shí)別方法。由于植株葉片屬于非剛性障礙,通過(guò)分析機(jī)器人前進(jìn)方向上的玉米植株三維點(diǎn)云數(shù)據(jù),研究其葉片與主干點(diǎn)云地面投影的分布規(guī)律,將K-means聚類(lèi)估算所得玉米點(diǎn)云中心點(diǎn)作為主干區(qū)域點(diǎn)。然后,利用玉米作物成行種植特性引入置信區(qū)間去除所估計(jì)玉米主干區(qū)域離群的聚類(lèi)點(diǎn),提高分析精確度。最終解析出高遮擋環(huán)境下玉米作物行中心導(dǎo)航線。模擬真實(shí)玉米農(nóng)田場(chǎng)景開(kāi)展試驗(yàn),與實(shí)際仿真玉米的主干位置對(duì)比,該方法識(shí)別的玉米位置沿作物行兩側(cè)感知系統(tǒng)3.0~3.5m前視距離最大誤差3.55cm,系統(tǒng)感知響應(yīng)平均用時(shí)2s,滿(mǎn)足60cm寬小型植保機(jī)器人最大移動(dòng)1m/s速度的自主通行局部導(dǎo)航的環(huán)境感知需求。

    Abstract:

    The small agricultural vehicles can effectively solve the problem of pest control. However, in the middle and later stages of corn growing period, leaves crisscross between interrows would severely obstruct the passable region, which would lead great trouble for crop protection vehicles to pass between interrows. A passable region extraction method was proposed for crop protection vehicles,which used a 16line LiDAR installed on the top of the vehicles as the sensing unit to collect the corn interrows information. The maize leaves were nonrigid obstacles. Touching the leaves as the robot travels did not cause crop damage. Through analyzing the threedimensional point cloud data of corn along vehicle forward direction, and studying the distribution law of ground projection of leaves and trunks, the center point of maize point cloud obtained by K-means clustering estimation was taken as the main regional point. Then, the confidence interval was introduced to remove the estimated outlier clustering points in the corn trunk area, and the analysis accuracy was improved. Finally, the central navigation line of the corn crop row under high occlusion environment was analyzed. The experiment was carried out by simulating the real corn field scene. Compared with the trunk position of actual simulated corn, the maximum apparent distance error of the maize position identified by this method was 3.55cm along both sides of the crop line. The average time of the current system perception response was 2s, which satisfied the local positioning requirements of the 60cm autonomous crop protection vehicles.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉路,潘艷娟,陳志健,王玉偉,李亞偉,陳黎卿.高遮擋環(huán)境下玉米植保機(jī)器人作物行間導(dǎo)航研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(10):11-17. LIU Lu, PAN Yanjuan, CHEN Zhijian, WANG Yuwei, LI Yawei, CHEN Liqing. Inter-rows Navigation Method for Corn Crop Protection Vehicles under High Occlusion Environment[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):11-17.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10