亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點(diǎn)研發(fā)計劃項目(2016YFD020060502)和中國農(nóng)業(yè)科學(xué)院基本科研業(yè)務(wù)費(fèi)項目(Y2019XK11)


Detection of Rice Seedling Rows Based on Hough Transform of Feature Point Neighborhood
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    水稻秧苗行檢測對于精準(zhǔn)農(nóng)業(yè)和自動導(dǎo)航至關(guān)重要,為此提出一種基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測方法,該方法可以有效解決雜草密度分布、光照強(qiáng)度和秧苗行曲率變化等因素對秧苗行檢測的影響。該方法主要包括3個步驟:水稻秧苗行圖像數(shù)據(jù)庫的建立、水稻秧苗特征點(diǎn)提取和秧苗行中心線識別。首先,在雜草萌發(fā)期建立水稻秧苗在不同光照條件(晴、陰天)、不同雜草密度分布和不同秧苗生長狀況的水稻秧苗行圖像數(shù)據(jù)庫;然后,采用基于Faster RCNN網(wǎng)絡(luò)的秧苗檢測模型獲得水稻秧苗的特征點(diǎn),即預(yù)測結(jié)果的中心點(diǎn);最后,采用提出的基于特征點(diǎn)鄰域的Hough變換算法識別秧苗行中心線。實(shí)驗(yàn)表明,本文方法對測試集秧苗行平均識別準(zhǔn)確率達(dá)到92%,對不同雜草密度分布的秧苗行平均識別精度小于0.5°,對孤立的雜草噪聲和光照變化不敏感,對曲率較大的秧苗行也能準(zhǔn)確識別,具有較好的魯棒性和識別精度。

    Abstract:

    The detection of rice seedling rows is essential for precision agriculture and automatic navigation. A method based on Hough transform of feature point neighborhood was proposed to detect rice seedling rows, which can effectively solve the effects of weed distribution with different densities, different light intensities, curvature changes of seedling rows and other factors. The method had three main steps: the establishment of images database of rice seedling rows, feature point extraction of rice seedlings and the recognition of seedling row centerlines. Firstly, the image database of rice seedling rows under different light conditions (sunny and cloudy days), different weed density distributions and seedling growth status was established during the weed germination period; and then the object detection model based on Faster RCNN network was adopted to detect the positions of rice seedlings; finally, the proposed Hough transform algorithm based on the feature point neighborhood was used to recognize the center line of the seedling row. Experiments indicated that the proposed method had an average accuracy of 92% on the test set, and an average recognition accuracy of seedling rows less than 05° under high and low weed density distributions. It was not sensitive to isolated weed noise and light changes, and can also accurately recognize seedling rows with large curvatures. Therefore, the proposed method had good robustness and recognition accuracy. 

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王姍姍,余山山,張文毅,王興松.基于特征點(diǎn)鄰域Hough變換的水稻秧苗行檢測[J].農(nóng)業(yè)機(jī)械學(xué)報,2020,51(10):18-25. WANG Shanshan, YU Shanshan, ZHANG Wenyi, WANG Xingsong. Detection of Rice Seedling Rows Based on Hough Transform of Feature Point Neighborhood[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(10):18-25.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-10-10
  • 出版日期: 2020-10-10