亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于視覺(jué)伺服的溫室番茄植株主莖跟蹤與測(cè)量方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(61703048)、北京市農(nóng)林科學(xué)院青年科研基金項(xiàng)目(QNJJ201722)和江蘇大學(xué)農(nóng)業(yè)裝備學(xué)部項(xiàng)目(4111680002)


racking and Measuring Method of Tomato Main-stem Based on Visual Servo
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    根據(jù)溫室番茄智能管理作業(yè)視覺(jué)信息獲取需求,研究了番茄植株主莖動(dòng)態(tài)跟蹤與立體測(cè)量方法,以提高對(duì)葉、果和花等目標(biāo)的搜索效率。結(jié)合工廠化番茄種植特征,采用二自由度雙目云臺(tái)攝像機(jī)采集植株主莖圖像;在對(duì)攝像機(jī)與旋轉(zhuǎn)云臺(tái)之間坐標(biāo)關(guān)系進(jìn)行標(biāo)定的基礎(chǔ)上,提出針對(duì)番茄植株主莖圖像跟蹤采集的云臺(tái)伺服控制方法,對(duì)作業(yè)區(qū)域內(nèi)植株進(jìn)行自下而上多視角圖像動(dòng)態(tài)采集;對(duì)相鄰視場(chǎng)主莖重疊區(qū)域的圖像匹配方法進(jìn)行研究,實(shí)現(xiàn)了植株離散圖像的拼接和形態(tài)恢復(fù);基于主莖跟蹤參考點(diǎn)的空間坐標(biāo)信息,研究了作業(yè)區(qū)域主莖長(zhǎng)度、高度和生長(zhǎng)傾角等立體形態(tài)參數(shù)的測(cè)量方法;最后,通過(guò)現(xiàn)場(chǎng)試驗(yàn)對(duì)主莖拼接與測(cè)量方法進(jìn)行驗(yàn)證。結(jié)果表明,在距地面高度600~1500mm作業(yè)區(qū)域內(nèi),視覺(jué)系統(tǒng)跟蹤采集的主莖3個(gè)區(qū)域圖像的平均拼接偏差為3.77°;以人工測(cè)量結(jié)果為對(duì)照,采用視覺(jué)系統(tǒng)測(cè)量主莖長(zhǎng)度、高度和生長(zhǎng)傾角的決定系數(shù)分別為0.9933、0.8426、0.9793,平均測(cè)量偏差分別為46.20mm、18.60mm和4.33°。本研究可為番茄智能化整枝、采摘和授粉等作業(yè)視覺(jué)信息獲取提供技術(shù)支撐。

    Abstract:

    Aiming at target’s visual information acquisition for robotic management in tomato greenhouse, the method of tracking and measuring the plant’s main-stem was researched, which was supposed to improve the detection efficiency on the object, such as fruit, leaf and flower. According to the tomato’s factory-planted condition in greenhouse, a binocular vision system with two-freedom pan-tilt mechanism was adopted to capture plant’s image and the calibration on the relationship between camera and pan-tilt coordinates data was introduced. The pan-tilt’s servo control method for tracking the plant’s main-stem was proposed, so that the camera could automatically capture the plants bottom-up images. The image matching method for splicing the discrete main-stem in the adjacent view-fields was researched, so as to recover the plant’s image morphology. Based on the 3D coordinate data of a series of tracking reference points, the main-stem’s length, vertical height, and inclination angle could be estimated. Finally, the method for tracking and measuring tomato’s main-stem was tested in greenhouse. As the result showed, in the working area from 600mm to 1500mm high from the ground, the vision system could capture three images of various view-fields, and the main-stem’s average splicing deviation was 3.77°. Compared with manual measurement results, the results of the automatic measurement method on main-stem’s length, vertical height and inclination angle, respectively had the determination coefficients of 0.9933, 0.8426 and 0.9793, and the average deviations of 46.20mm, 18.60mm and 4.33°, respectively. In view of the performance on tracking and measuring target, the method was expected to be a support for researching on tomato’s automatic pruning, harvesting and pollinating.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馮青春,王秀,劉繼展,成偉,陳建.基于視覺(jué)伺服的溫室番茄植株主莖跟蹤與測(cè)量方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(11):221-228. FENG Qingchun, WANG Xiu, LIU Jizhan, CHENG Wei, CHEN Jian. racking and Measuring Method of Tomato Main-stem Based on Visual Servo[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(11):221-228.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-02-17
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期: 2020-11-25
文章二維碼