亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于氣流脈沖和結(jié)構(gòu)光成像的牛肉嫩度檢測(cè)方法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(32071896、31960487)、江蘇省自然科學(xué)基金面上項(xiàng)目(BK20181315)、江蘇省農(nóng)業(yè)科技自主創(chuàng)新項(xiàng)目(CX(20)3068)和揚(yáng)州市重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(YZ2018038)


Beef Tenderness Detection Based on Pulse Air-puff Combined with Structural Light 3D Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)傳統(tǒng)牛肉嫩度檢測(cè)速度慢、精度低的問(wèn)題,提出了基于氣流脈沖結(jié)合結(jié)構(gòu)光3D成像的牛肉嫩度快速無(wú)損檢測(cè)方法。首先,利用脈沖氣流對(duì)牛肉表面進(jìn)行沖擊,同時(shí)通過(guò)結(jié)構(gòu)光3D成像獲取待測(cè)牛肉表面凹陷區(qū)域的三維點(diǎn)云信息;然后,采用去噪、點(diǎn)云分割、貪婪投影三角化、Delaunay三角化、曲面擬合等算法進(jìn)行點(diǎn)云處理,獲得牛肉表面凹陷區(qū)域的深度、映射面積、表面積和體積等信息;基于此,分別建立基于最小二乘支持向量機(jī)回歸(LS-SVR)、BP神經(jīng)網(wǎng)絡(luò)和廣義回歸神經(jīng)網(wǎng)絡(luò)(GRNN)的生鮮牛肉剪切力預(yù)測(cè)模型;結(jié)果表明,GRNN模型預(yù)測(cè)表現(xiàn)最佳,預(yù)測(cè)集相關(guān)系數(shù)為0.975,均方根誤差為5.307N。采用基于K-fold交叉驗(yàn)證的GRNN神經(jīng)網(wǎng)絡(luò)對(duì)牛肉嫩度等級(jí)進(jìn)行預(yù)測(cè),結(jié)果顯示該方法對(duì)較嫩牛肉分級(jí)效果較好,為100%,對(duì)較老牛肉分級(jí)效果稍差,為91.3%。研究表明,基于氣流脈沖結(jié)合結(jié)構(gòu)光3D成像進(jìn)行牛肉剪切力以及嫩度快速、無(wú)損檢測(cè)是可行的。

    Abstract:

    With the aim to solve the problem of low detection speed and precision of beef tenderness, a fast nondestructive detection method for beef tenderness based on airpuff and structural light 3D imaging technology was proposed. The structural light 3D scanning technology was used to obtain the threedimensional point cloud information on the surface of the beef and the point cloud processing technology was combined to extract the depth, area, surface area and volume parameters of the stressed depression area on the beef. In point cloud processing, denoising, point cloud segmentation, greedy projection triangulation, Delaunay triangulation, surface fitting and other algorithms were used to extract the characteristic parameters of beef samples. The modeling method was used to establish the prediction model of beef shear force which about the least squares support vector machine regression (LS-SVR), back propagation (BP) and general regression neural network (GRNN). The results showed that the GRNN model performed the best with the correlation coefficients of prediction set of 0.975, and root mean squared error of 5.307N. The GRNN neural network based on K-fold cross validation was used to predict the tenderness grade. It was worth noting that the results showed that the method had a better grading effect on the tender beef of 100% and a slightly worse grading effect on the tougher beef of 91.3%. The results demonstrated that the proposed airpuff combined with structured light method was effective in beef tenderness detection nondestructively. The research result provided a method for poultry meat tenderness detection and a basis for online poultry tenderness detection which had broad application prospect not only in meat tenderness but also in fruit hardness and ripeness detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

盧偉,胡慶迎,代德建,張澄宇,DENG Yiming.基于氣流脈沖和結(jié)構(gòu)光成像的牛肉嫩度檢測(cè)方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(12):324-331. LU Wei, HU Qingying, DAI Dejian, ZHANG Chengyu, DENG Yimin. Beef Tenderness Detection Based on Pulse Air-puff Combined with Structural Light 3D Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(12):324-331.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼