亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)YOLOv3-tiny的田間行人與農(nóng)機(jī)障礙物檢測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019YFB1312301)


Detection of Pedestrian and Agricultural Vehicles in Field Based on Improved YOLOv3-tiny
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為實(shí)現(xiàn)農(nóng)機(jī)自主作業(yè)中的避障需求,本文針對(duì)室外田間自然場(chǎng)景中因植被遮擋、背景干擾而導(dǎo)致障礙物難以檢測(cè)的問題,基于嵌入式平臺(tái)應(yīng)用設(shè)備,提出了農(nóng)機(jī)田間作業(yè)時(shí)行人和農(nóng)機(jī)障礙物檢測(cè)的改進(jìn)模型,更好地平衡了模型的檢測(cè)速度與檢測(cè)精度。該改進(jìn)模型以You only look once version 3 tiny(YOLOv3-tiny)為基礎(chǔ)框架,融合其淺層特征與第2 YOLO預(yù)測(cè)層特征作為第3預(yù)測(cè)層,通過更小的預(yù)選框增加小目標(biāo)表征能力;在網(wǎng)絡(luò)關(guān)鍵位置的特征圖中混合使用注意力機(jī)制中的擠壓激勵(lì)注意模塊(Squeeze and excitation attention module,SEAM) 與卷積塊注意模塊(Convolutional block attention module,CBAM),通過強(qiáng)化檢測(cè)目標(biāo)關(guān)注以提高抗背景干擾能力。建立了室外環(huán)境下含農(nóng)機(jī)與行人的共9405幅圖像的原始數(shù)據(jù)集。其中訓(xùn)練集7054幅,測(cè)試集2351幅。測(cè)試表明本文模型的內(nèi)存約為YOLOv3與單次多重檢測(cè)器(Single shot multibox detector,SSD)模型內(nèi)存的1/3和2/3;與YOLOv3-tiny相比,本文模型平均準(zhǔn)確率(Mean average precision,mAP)提高11個(gè)百分點(diǎn),小目標(biāo)召回率(Recall)提高14百分點(diǎn)。在Jetson TX2嵌入式平臺(tái)上本文模型的平均檢測(cè)幀耗時(shí)122ms,滿足實(shí)時(shí)檢測(cè)要求。

    Abstract:

    The real-time detection of pedestrian and agricultural vehicles is very important for the navigation and path planning of autonomous agricultural vehicles. In the field, obstacles are difficult to be detected due to crops occlusion and background interference. A real-time pedestrian and agricultural vehicles detection model in natural field scene was proposed, which effectively improved the feasibility of pedestrian and agricultural vehicles visual detection to embedded platform in the independent operation of agricultural machinery. This detection model was improved based on You only look once version 3 tiny (YOLOv3-tiny). A third prediction layer was got by merging the features of YOLOv3-tiny’s shallow layer and the features of second YOLO prediction layer, thus more smaller anchors resulted in the detection ability improvement of small targets. Both the squeeze and excitation attention module (SEAM) and the convolutional block attention module (CBAM) were applied in the key feature maps of the network, thus the model’s anti-background disturbance capability was increased. A data set included 9405 images of pedestrian and agricultural vehicles with different shooting angles and natural field scenes was set, and 7054 images were used for training while the remained 2351 images were used for testing. Tests showed that the memory size of the improved model was reduced to 1/3 and 2/3 of that of the YOLOv3 and single shot multibox detector (SSD) models, the improved model’s mean average precision (mAP) was increased by 11 percentage points, and the small target recall (R) rate was increased by 14 percentage points while compared with that of YOLOv3-tiny. On the Jetson TX2 embedded hardware platform, the single frame detection time of the improved model was 122ms, which can meet the requirements of real-time detection.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

李文濤,張巖,莫錦秋,李彥明,劉成良.基于改進(jìn)YOLOv3-tiny的田間行人與農(nóng)機(jī)障礙物檢測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(s1):1-8,33. LI Wentao, ZHANG Yan, MO Jinqiu, LI Yanming, LIU Chengliang. Detection of Pedestrian and Agricultural Vehicles in Field Based on Improved YOLOv3-tiny[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):1-8,33.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-12
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼