亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于旋轉(zhuǎn)曲面輪廓特征的農(nóng)田地表點云配準(zhǔn)研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD0701901)


Field Surface Point Cloud Registration Based on Contour Features of Rotating Curved Surface
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    作業(yè)場景重建可為智能農(nóng)機自主作業(yè)提供全局信息與局部細(xì)節(jié),針對因農(nóng)田表面缺乏高區(qū)分度的點、線、面高層結(jié)構(gòu)造成的特征描述性差、點云配準(zhǔn)精度不足的問題,提出一種基于旋轉(zhuǎn)曲面輪廓特征的農(nóng)田地表點云配準(zhǔn)方法。首先,采用32線激光雷達(dá)獲取農(nóng)田真實地表點云數(shù)據(jù)并完成去噪、降采樣等預(yù)處理;然后,采用加權(quán)線性協(xié)方差矩陣的奇異值分解確定關(guān)鍵點唯一局部參考坐標(biāo)系,并統(tǒng)計關(guān)鍵點與旋轉(zhuǎn)曲面截面交點距離信息,生成地表點云的局部特征;最后,采用基于單特征初選與局部特征精匹配原則的多級特征匹配策略進(jìn)行局部特征匹配,計算旋轉(zhuǎn)矩陣與平移矩陣完成點云配準(zhǔn)。試驗結(jié)果表明,旋轉(zhuǎn)曲面輪廓特征與其他特征相比,平均精度增加7.5個百分點,平均召回率增加24.09個百分點;多級特征匹配策略相對于最近鄰搜索策略,平均精度增加12.68個百分點,平均召回率增加18.38個百分點;本文的點云配準(zhǔn)方法的平均平移誤差為23.59dr,平均旋轉(zhuǎn)誤差為3.72°,配準(zhǔn)成功率為87.5%。因此,本文提出的基于旋轉(zhuǎn)曲面輪廓特征的農(nóng)田地表點云配準(zhǔn)方法適用于真實農(nóng)業(yè)地表無序點云的自動配準(zhǔn)。

    Abstract:

    Scene reconstruction can provide global information and local details for the autonomous operation of intelligent agricultural machinery. Aiming at the problem of poor feature description and insufficient point cloud registration accuracy caused by the lack of high-level structure of points, lines and planes on the surface of field, a solution based on point cloud registration method for farmland surface based on contour features of rotating surface was proposed. Firstly, the 32-line LiDAR was used to obtain real surface point cloud data of the field and complete pre-processing such as denoising and down-sampling;then, singular value decomposition of weighted linear covariance calculation matrix was used to determine the unique local reference coordinate system of key points, and the distance information of the intersection between the key points and the rotating surface section was calculated to generate the local feature descriptor of the surface point cloud;finally, a multi-level feature matching strategy based on the principle of single feature primary selection and local feature fine matching was used to perform local feature matching, and the rotation matrix and translation matrix were calculated to complete the point cloud registration. The analysis results showed that compared with other methods, the average accuracy of the contour feature of the rotating surface was increased by 7.5 percentage points, and the average recall rate was increased by 24.09 percentage points;compared with the nearest neighbor search, the multi-level feature matching strategy increased the average accuracy by 12.68 percentage points and the average recall rate by 18.38 percentage points;the point cloud registration method proposed had an average translation error of 23.59dr, an average translation error of 3.72°, and a registration success rate of 87.5%. Therefore, the proposed field surface point cloud registration method based on the contour feature of the rotating surface was suitable for the automatic registration of the real agricultural surface disorder point cloud.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

董乃希,遲瑞娟,杜岳峰,溫昌凱,張真.基于旋轉(zhuǎn)曲面輪廓特征的農(nóng)田地表點云配準(zhǔn)研究[J].農(nóng)業(yè)機械學(xué)報,2020,51(s1):325-332,377. DONG Naixi, CHI Ruijuan, DU Yuefeng, WEN Changkai, ZHANG Zhen. Field Surface Point Cloud Registration Based on Contour Features of Rotating Curved Surface[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):325-332,377.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼