亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于DeepAR-RELM的池塘溶解氧時(shí)空預(yù)測(cè)方法研究
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

江蘇省農(nóng)業(yè)科技自主創(chuàng)新資金項(xiàng)目(CX(19)1003)和山東省重大科技創(chuàng)新工程項(xiàng)目(2019JZZY010703)


Spatio-temporal Prediction Method of Dissolved Oxygen in Ponds Based on DeepAR-RELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    水體溶解氧(Dissolved oxygen,DO)是養(yǎng)殖水產(chǎn)品健康生長(zhǎng)的重要生態(tài)因子。池塘溶解氧易受多種因素的影響,會(huì)產(chǎn)生時(shí)間和空間上分布的差異,現(xiàn)有的溶解氧預(yù)測(cè)方法大多是針對(duì)單監(jiān)測(cè)點(diǎn)的時(shí)間序列預(yù)測(cè),無(wú)法描述池塘溶解氧的空間分布,因此,對(duì)池塘溶解氧進(jìn)行時(shí)間和空間預(yù)測(cè)非常重要。本文提出一種基于自回歸循環(huán)神經(jīng)網(wǎng)絡(luò)(Autoregressive recurrent neural network,DeepAR)和正則化極限學(xué)習(xí)機(jī)(Regularized extreme learning machine,RELM)的池塘溶解氧時(shí)空預(yù)測(cè)方法。首先采用樣本熵(Sample entropy,SE)衡量各個(gè)監(jiān)測(cè)點(diǎn)溶解氧序列的波動(dòng)程度,采用最大互信息系數(shù)(Maximum mutual information coefficient,MIC)衡量監(jiān)測(cè)點(diǎn)溶解氧序列之間的相關(guān)性,綜合選取出溶解氧序列波動(dòng)程度較小且與各個(gè)監(jiān)測(cè)點(diǎn)相關(guān)性較大的監(jiān)測(cè)點(diǎn)作為中心監(jiān)測(cè)點(diǎn),并以中心監(jiān)測(cè)點(diǎn)為原點(diǎn),建立池塘空間坐標(biāo)系;其次采用DeepAR算法構(gòu)建中心監(jiān)測(cè)點(diǎn)的溶解氧時(shí)間序列預(yù)測(cè)模型,實(shí)現(xiàn)中心監(jiān)測(cè)點(diǎn)溶解氧時(shí)間序列預(yù)測(cè);最后采用RELM算法構(gòu)建中心監(jiān)測(cè)點(diǎn)與池塘各位置溶解氧之間的空間映射關(guān)系模型,結(jié)合中心監(jiān)測(cè)點(diǎn)溶解氧時(shí)間序列預(yù)測(cè)值和池塘空間坐標(biāo),實(shí)現(xiàn)對(duì)未來(lái)時(shí)刻池塘溶解氧的空間預(yù)測(cè)。該方法在提高時(shí)間序列預(yù)測(cè)精度的同時(shí),實(shí)現(xiàn)了對(duì)未來(lái)時(shí)刻池塘溶解氧空間狀態(tài)的預(yù)測(cè)。在真實(shí)的數(shù)據(jù)集上進(jìn)行測(cè)試,預(yù)測(cè)未來(lái)24h的池塘空間溶解氧值,均方根誤差(RMSE)為1.2633mg/L、平均絕對(duì)誤差(MAE)為0.9755mg/L、平均絕對(duì)百分比誤差(MAPE)為14.8732%。并與標(biāo)準(zhǔn)極限學(xué)習(xí)機(jī)(Extreme learning machine,ELM)、徑向基神經(jīng)網(wǎng)絡(luò)(Radial basis function neural network,RBFNN)、梯度提升回歸樹(shù)(Gradient boosting regression tree ,GBRT)和隨機(jī)森林(Random forest,RF)4種預(yù)測(cè)方法進(jìn)行對(duì)比,各評(píng)價(jià)指標(biāo)的性能均有較大幅度提升,表明該方法有較好的預(yù)測(cè)精度和泛化能力,能夠較準(zhǔn)確地實(shí)現(xiàn)池塘溶解氧時(shí)空預(yù)測(cè)。

    Abstract:

    Dissolved oxygen (DO) in water is an important ecological factor for the healthy growth of aquaculture products. Dissolved oxygen in ponds is susceptible to many factors, which would cause differences in temporal and spatial distribution. Most of the existing dissolved oxygen prediction methods are time series predictions for a single monitoring point, and it cannot describe the spatial distribution of dissolved oxygen in the pond. Therefore, it is very important to predict the spatial and temporal dissolved oxygen in ponds. A spatio-temporal prediction method of dissolved oxygen in ponds based on autoregressive recurrent neural network (DeepAR) and regularized extreme learning machine (RELM) was proposed. Firstly, according to the sample entropy (SE) of the original dissolved oxygen sequence of each monitoring point and the maximum mutual information coefficient (MIC) between the sequences, a monitoring point with a smaller entropy value and a greater correlation with each point was selected as the central monitoring point, and the pond spatial coordinate system was established with the central monitoring point as the origin. Secondly, the DeepAR algorithm was used to predict the time series of dissolved oxygen in the central monitoring point. Finally, the RELM algorithm was used to construct the spatial mapping relation model between the central monitoring point and the dissolved oxygen in each location of the pond, and the spatial prediction of the dissolved oxygen in the pond in the future was realized by combining the predicted value of the time series of the dissolved oxygen at the central monitoring point and the spatial coordinates of the pond. This method not only improved the accuracy of time series prediction, but also realized the spatial prediction of dissolved oxygen in ponds. Tested on a real dataset predicting the dissolved oxygen value of the pond space in the next 24 hours, the root mean square error (RMSE) was 1.2633mg/L, the average absolute error (MAE) was 0.9755mg/L, and the average absolute percentage error (MAPE) was 14.8732%. Compared with common prediction methods, the performance of each evaluation index was greatly improved, which could more accurately realize the spatio-temporal prediction of dissolved oxygen in ponds.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

樊宇星,任妮,田港陸,段青玲.基于DeepAR-RELM的池塘溶解氧時(shí)空預(yù)測(cè)方法研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(s1):405-412. FAN Yuxing, REN Ni, TIAN Ganglu, DUAN Qingling. Spatio-temporal Prediction Method of Dissolved Oxygen in Ponds Based on DeepAR-RELM[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s1):405-412.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-03
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-11-10
  • 出版日期:
文章二維碼