亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于長短期記憶的柑橘園蒸散量預(yù)測模型
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

廣東省科技專項資金(“大專項+任務(wù)清單”)項目(2020020103)、廣東省重點領(lǐng)域研發(fā)計劃項目(2019B020214003)、廣東省教育廳特色創(chuàng)新類項目(2019KTSCX013)、國家荔枝龍眼產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金項目(CARS-32-14)、廣東省現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系創(chuàng)新團隊建設(shè)專項資金項目(2019KJ108)和廣東省大學(xué)生科技創(chuàng)新培育專項資金項目(PDJH2019B0080)


Modeling on Prediction of Evapotranspiration of Citrus Orchard Based on LSTM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    傳統(tǒng)的柑橘灌溉方式主要依賴人工經(jīng)驗,一方面有可能導(dǎo)致灌溉時機不準(zhǔn)確,另一方面有可能造成灌溉量過高或者過低,對果實的生長都會產(chǎn)生負(fù)面影響。柑橘果園水分蒸散量是表征耗水量的重要指標(biāo)。為了實現(xiàn)對大面積柑橘果園蒸散量(Evapotranspiration, ET)的準(zhǔn)確估算,制定更加科學(xué)精細(xì)化的灌溉策略,基于氣象數(shù)據(jù)集,應(yīng)用長短期記憶(Long shortterm memory, LSTM)、極限學(xué)習(xí)機(Extreme learning machine, ELM)和廣義回歸神經(jīng)網(wǎng)絡(luò)(General regression neural network, GRNN)方法對蒸散量建立預(yù)測模型并驗證其準(zhǔn)確性。結(jié)果表明,LSTM模型的平均絕對誤差(Mean absolute error, MAE)和均方根誤差(Root mean square error, RMSE)是3種模型中最優(yōu)的,ELM和GRNN模型的性能接近。為了估算3種模型結(jié)果的可信度,在訓(xùn)練時加入了蒙特卡洛不確定性分析方法。結(jié)果表明,LSTM模型在不同輸入特征數(shù)量下具有較高的精度,而ELM模型存在預(yù)測值偏高的現(xiàn)象,GRNN模型則偏低。

    Abstract:

    Citrus is an important fruit and it’s strongly relevant between quality and irrigation. Traditional irrigation strategies relying on human experience caused two problems, i.e. inaccurate irrigation timing and quantity. Both of the two problems have negative influence on citrus. The evapotranspiration of citrus orchard is an important index of water consumption. In order to evaluate citrus orchard evapotranspiration (ET) to make more scientific and precise irrigation strategies, the long shortterm memory (LSTM), extreme learning machine (ELM) and general regression neural network (GRNN) methods were applied to model ET and test its performance based on climatic data. The result showed that LSTM performed the best in mean absolute error (MAE) and root mean square error (RMSE) than the other two models. And ELM model performed closely to GRNN. In order to evaluate the certainty of three models, the Monte Carlo analysis method was added to the process of training. The result indicated that LSTM had good accuracy in different input features while ELM tended to overestimate ET and GRNN tended to underestimate ET. It’s practical to applicate the proposed method to make precise irrigation strategies. 

    參考文獻
    相似文獻
    引證文獻
引用本文

謝家興,高鵬,孫道宗,陳文彬,陳紹楠,王衛(wèi)星.基于長短期記憶的柑橘園蒸散量預(yù)測模型[J].農(nóng)業(yè)機械學(xué)報,2020,51(s2):351-356. XIE Jiaxing, GAO Peng, SUN Daozong, CHEN Wenbin, CHEN Shaonan, WANG Weixing. Modeling on Prediction of Evapotranspiration of Citrus Orchard Based on LSTM[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s2):351-356.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼