亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜成像技術(shù)的面條中馬鈴薯全粉含量檢測
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

山東省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2019JZZY010734)


Detection of Potato Powder Addition in Noodles Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了快速檢測面條中馬鈴薯全粉含量,研究近紅外高光譜成像技術(shù)定量檢測面條中馬鈴薯全粉含量的可能性,自制了馬鈴薯全粉質(zhì)量分?jǐn)?shù)在0~35%內(nèi)隨機(jī)均勻分布的120個(gè)面條樣品,在900~2500nm范圍采集高光譜圖像,隨機(jī)選取80個(gè)樣品作為校正集,分別采用原始光譜和經(jīng)過6種預(yù)處理方法預(yù)處理后的光譜建立了偏最小二乘回歸、主成分回歸、支持向量機(jī)回歸模型。結(jié)果表明經(jīng)標(biāo)準(zhǔn)化預(yù)處理后用偏最小二乘回歸建模效果最好,校正集決定系數(shù)(R2C)為0.8653,交叉驗(yàn)證集決定系數(shù)(R2CV)為0.6914。用回歸系數(shù)法在經(jīng)過標(biāo)準(zhǔn)化預(yù)處理后的光譜數(shù)據(jù)中提取了與全粉含量相關(guān)的特征波長,建立了馬鈴薯全粉含量偏最小二乘回歸簡化模型, 校正集決定系數(shù)(R2C)為0.8685,交叉驗(yàn)證集決定系數(shù)(R2CV)為0.8021,基于特征波長建立的模型效果優(yōu)于全波段模型,模型效果得到了一定的提高。以剩余40個(gè)未參與校正模型建立的樣品作為預(yù)測集,基于特征波長建立了標(biāo)準(zhǔn)化-偏最小二乘回歸簡化預(yù)測模型,預(yù)測集決定系數(shù)(R2P)為0.8546,模型具有較好的預(yù)測能力。結(jié)果表明利用近紅外高光譜成像技術(shù)可檢測面條中馬鈴薯全粉含量,可為馬鈴薯全粉面條的快速無損檢測建立新的方法。

    Abstract:

    In order to quickly and nondestructively detect the content of whole potato powder in potato noodles, the hyperspectral imaging technology was used to quantitatively detect the content of whole potato powder in noodles. Totally 120 noodle samples with a total potato flour content of 0~35% were selfmade, and hyperspectral images of the noodles were collected in the 900~2500nm spectral range. Totally 80 samples were randomly selected as the calibration set, and the original spectra and the spectra preprocessed by moving average, smoothing S-G, baseline, normalize, standard normalized variate, and multiplicative scattering correction were used to establish the partial least squares regression model, principal component regression model and support vector machine regression model. The results showed that the partial least squares regression modeling effect was the best after the standardized preprocessing method. The coefficient of determination of the calibration set (R2C) was 0.8653, the coefficient of determination of the cross validation set (R2CV) was 0.6914. The characteristic wavelength was extracted from the spectral data preprocessed by normalize by regression coefficient method, and a simplified model of potato powder content PLSR was established. The coefficient of determination of the calibration set (R2C) was 0.8685. The validation set determination coefficient (R2CV) was 0.8021. The results showed that the model based on the characteristic wavelength was better than the fullband model. Using the remaining 40 samples as the prediction set, the NormalizePLSR simplified prediction model was established based on the characteristic wavelength. The coefficient of determination of the prediction set (R2P) was 0.8456. The model had good prediction ability. The results showed that it was feasible to use hyperspectral imaging technology to detect the total potato flour content in noodles.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

任志尚,彭慧慧,賀壯壯,杜娟,印祥,馬成業(yè).基于高光譜成像技術(shù)的面條中馬鈴薯全粉含量檢測[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(s2):466-470,506. REN Zhishang, PENG Huihui, HE Zhuangzhuang, DU Juan, YIN Xiang, MA Chengye. Detection of Potato Powder Addition in Noodles Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s2):466-470,506.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼