亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于R2U-Net和空洞卷積的羊后腿分割目標(biāo)肌肉區(qū)識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0700804)


Target Muscle Region Recognition in Ovine Hind Leg Segmentation Based on R2U-Net and Atrous Convolution Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對前處理工序造成的羊肉智能精細(xì)分割目標(biāo)肌肉區(qū)圖像識別準(zhǔn)確度低的問題,以羊后腿自動去骨分割工序為研究對象,提出一種基于R2U-Net和緊湊空洞卷積的羊后腿分割目標(biāo)肌肉區(qū)識別方法。對傳統(tǒng)的U-Net語義分割網(wǎng)絡(luò)進(jìn)行改進(jìn),以U-Net為骨架網(wǎng)絡(luò),采用殘差循環(huán)卷積塊替換原始U-Net的特征編碼模塊和解碼模塊中的卷積塊以避免U-Net的梯度消失,在特征編碼模塊和特征解碼模塊之間增加一個緊湊的四分支空洞卷積模塊對語義特征進(jìn)行多尺度編碼,實現(xiàn)縫匠肌圖像分割模型的構(gòu)建。一方面,針對縫匠肌這一核心目標(biāo)肌肉區(qū),采集羊后腿圖像構(gòu)建數(shù)據(jù)集訓(xùn)練與測試本文模型,以驗證該方法的準(zhǔn)確性與實時性;另一方面,通過旋量法標(biāo)定夾爪坐標(biāo)系、相機(jī)點云坐標(biāo)系、機(jī)器人坐標(biāo)系的齊次變換矩陣以計算分割路徑,并采用主動柔順的力/位混合控制方法操縱分割機(jī)器人進(jìn)行目標(biāo)切削運動,驗證基于本文方法得到的目標(biāo)圖像開展目標(biāo)肌肉分割的可行性。相關(guān)試驗結(jié)果表明:當(dāng)交并比為0.8588時,本文方法平均精確度為0.9820,優(yōu)于R2U-Net的(0.8324,0.9775);單樣本檢測時間平均為82ms,說明本文方法可快速、準(zhǔn)確分割出縫匠肌圖像,滿足機(jī)器人自主分割系統(tǒng)的實時性要求,優(yōu)于U-Net、R2U-Net、AttU-Net算法。最后,在本文方法得到的縫匠肌圖像基礎(chǔ)上開展機(jī)器人實機(jī)分割試驗,機(jī)器人對5條羊后腿的平均切削時間為7.9s,平均偏移距離為4.36mm,最大偏移距離不大于5.9mm,滿足羊后腿去骨分割的精度要求。

    Abstract:

    Research on ovine meats intelligent segmentation remains limited because of the low recognition accuracy of target muscle region image caused by preprocessing process. A method of target muscle region recognition in ovine hind leg intelligent segmentation based on R2U-Net and dense atrous convolution algorithm was presented. The traditional U-Net semantic segmentation network was taken as the backbone network and improved. The convolution blocks in the feature encoder and decoder of the original U-Net were replaced with the residual recurrent convolution blocks to avoid the gradient loss of the U-Net and a four branch dense atrous convolutional module was added between the feature encoder and the feature decoder to code multiscale semantic features. On the one hand, aiming at the sartorius muscle region, the ovine hind leg images were collected to build a dataset and the model was trained and tested using the dataset to validate the accuracy and realtime performance of this method; on the other hand, the homogeneous transformation matrix of gripper coordinate system, camera point clouds coordinate system and robot coordinate system was calibrated based on screw theory to calculate the segmentation path, and the robot cutting manipulation was controlled by an active compliant force/position hybrid control method, which validated the feasibility of target muscle segmentation based on the target image obtained by this method. The experimental results showed that when the intersection over union (IOU) was 0.8588, the average precision (AP) of the proposed method was 0.9820, which was better than that of R2U-Net (0.8324, 0.9775); the average time of single sample detection was 82ms, which showed that this method can segment the sartorius image quickly and accurately, which met the realtime requirements of robot autonomous segmentation system, and it was better than U-Net, R2U-Net and AttU-Net algorithms. Finally, based on the image of sartorius muscle obtained by this method, the real robot segmentation experiment was carried out. The average time of robot cutting on five sheep hind legs was 7.9s, the average offset distance was 4.36mm and the maximum offset distance was not more than 5.90mm, which met the accuracy requirements of sheep hind leg boneless segmentation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

劉楷東,謝斌,翟志強,溫昌凱,侯松濤,李君.基于R2U-Net和空洞卷積的羊后腿分割目標(biāo)肌肉區(qū)識別[J].農(nóng)業(yè)機(jī)械學(xué)報,2020,51(s2):507-514. LIU Kaidong, XIE Bin, ZHAI Zhiqiang, WEN Changkai, HOU Songtao, LI Jun. Target Muscle Region Recognition in Ovine Hind Leg Segmentation Based on R2U-Net and Atrous Convolution Algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(s2):507-514.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-08-10
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2020-12-10
  • 出版日期: 2020-12-10
文章二維碼