亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機制的農(nóng)業(yè)文本命名實體識別
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(61871041)、國家重點研發(fā)計劃項目(2019YFD1101105)和北京市科技計劃項目(Z191100004019007)


Named Entity Recognition of Chinese Agricultural Text Based on Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對農(nóng)業(yè)智能問答系統(tǒng)構(gòu)建過程中傳統(tǒng)的農(nóng)業(yè)命名實體識別方法依賴人工特征模板、特征信息提取不充分、實體名稱多樣導(dǎo)致標注不一致等問題,提出一種基于注意力機制的農(nóng)業(yè)文本命名實體識別方法。采用連續(xù)詞袋模型(Continuous bag of words,CBOW)對輸入字向量進行預(yù)訓(xùn)練,豐富字向量特征信息,緩解分詞準確度對性能的影響;引入文檔級的注意力(Attention)機制,獲取實體間相似信息,保證實體在不同語境下的標簽一致性;基于雙向長短期記憶網(wǎng)絡(luò)(Bi-directional long-short term memory,BiLSTM)和條件隨機場(Conditional random field,CRF)模型,構(gòu)建適合農(nóng)業(yè)領(lǐng)域?qū)嶓w識別的模型框架。選取4604篇農(nóng)業(yè)文本,針對病害、蟲害、農(nóng)藥、農(nóng)作物品種4類實體進行了識別實驗。結(jié)果表明,模型能有效地辨別農(nóng)業(yè)文本中的實體,緩解實體標記不一致的問題,在農(nóng)業(yè)語料上達到了較好的結(jié)果,識別的準確率、召回率、F值分別為93.48%、90.60%、92.01%。與其他3種識別方法相比,模型在不同規(guī)模語料庫的準確率均有一定提高,具有明顯的性能優(yōu)勢。

    Abstract:

    Agricultural named entity recognition is a fundamental tasks for natural language processing in the agricultural field. More importantly, it is the key basic step of constructing agricultural knowledge graph and intelligent question answering system. Traditional named entity recognition (NER) methods based on CRF model which relies on large amounts of hand-crafted features, cannot extract more effective features and solve the inconsistency of entity tagging caused by the diversity of entity names. To issue the above problems, an Att-BiLSTM-CRF framework was proposed based on deep learning. Firstly, the CBOW model was used to pre-train character embedding on a large number of unlabeled agricultural corpora, and alleviate the impact of segmentation accuracy on the performance of the model. Then, the document-level attention mechanism was introduced to obtain the similar information between entities in the text, so as to ensure the consistency of entity tagging in different contexts. Finally, based on BiLSTM-CRF benchmark model, a model framework suitable for agricultural named entity recognition was constructed. Totally 4604 agricultural texts were chosen to identify diseases, pests, pesticides and crop varieties. The experimental results showed that the model can effectively identify the entities in the agricultural text and alleviate the problem of inconsistent entity tagging. The model achieved good result in the agricultural corpus, and the recognition precision, recall, and F-score were respectively 93.48%, 90.60% and 92.01%. Compared with other models,such as LSTM model,LSTM-CRF model and BiLSTM-CRF model,Att-BiLSTM-CRF had obvious advantages in different size corpus, and it can effectively identify entities for agricultural texts.

    參考文獻
    相似文獻
    引證文獻
引用本文

趙鵬飛,趙春江,吳華瑞,王維.基于注意力機制的農(nóng)業(yè)文本命名實體識別[J].農(nóng)業(yè)機械學(xué)報,2021,52(1):185-192. ZHAO Pengfei, ZHAO Chunjiang, WU Huarui, WANG Wei. Named Entity Recognition of Chinese Agricultural Text Based on Attention Mechanism[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):185-192.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-04-13
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-01-10
  • 出版日期:
文章二維碼