亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多源遙感數據的輸電線走廊樹種分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學基金面上項目(41971376)


Tree Species Classification of Power Line Corridor Based on Multi-source Remote Sensing Data
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對目前樹冠提取中受背景影響和易出現(xiàn)過度分割的問題,首先,采用可見光差異植被指數和雙邊濾波對傳統(tǒng)的單木樹冠分割方法進行了改進;然后,以單木樹冠為對象提取多維特征,并利用XGBoost算法進行特征重要性排序和特征選擇;最后,使用隨機森林、支持向量機、人工神經網絡3種非參數分類器,設計了12種分類方案,進行了單木樹種分類和精度評價。結果表明,改進的單木分割方法可以有效提高樹冠提取精度,得到的樹冠分割精度在80%以上;將LiDAR數據和航空正射影像相結合,采用XGBoost算法進行特征選擇后,使用ANN分類器的分類方案精度最高,總體精度為86.19%,說明多源數據協(xié)同作用和特征選擇可以提高樹種分類精度,在單木尺度上ANN分類器對現(xiàn)有樹種類型的分類能力最強。

    Abstract:

    The effectiveness of airborne LiDAR point cloud and aerial imagery on tree species classification and the effect of XGBoost algorithm for feature selection on tree species classification accuracy were researched, and the ability three non-parametric classifiers of random forest, support vector machine and artificial neural network to classify tree species on a single-wood scale were evaluated. Aiming at the current background effect of canopy extraction and the problem of over-segmentation, the traditional single tree canopy segmentation method was improved by using the visible light difference vegetation index and bilateral filtering;and then the single tree canopy was used as an object to extract multi-dimensional features by using the XGBoost algorithm to perform feature importance ranking and feature selection. Finally, three non-parameter classifiers of random forest, support vector machine and artificial neural network were used to design 12 classification schemes to classify single tree species and do accuracy evaluation. The results showed that the improved single tree segmentation method can effectively improve the accuracy of tree crown extraction, and the accuracy of the obtained tree canopy segmentation results was more than 80%;the LiDAR data and aerial orthophotos were combined, and the ANN classifier was used for feature selection after XGBoost algorithm for feature selection. The scheme had the highest accuracy, with an overall accuracy of 86.19%, indicating that multi-source data synergy and feature selection can improve the accuracy of tree species classification. The ANN classifier had the strongest ability to classify existing tree species on a single tree scale.

    參考文獻
    相似文獻
    引證文獻
引用本文

王瑞瑞,李文靜,石偉,蘇婷婷.基于多源遙感數據的輸電線走廊樹種分類[J].農業(yè)機械學報,2021,52(3):226-233. WANG Ruirui, LI Wenjing, SHI Wei, SU Tingting. Tree Species Classification of Power Line Corridor Based on Multi-source Remote Sensing Data[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(3):226-233.

復制
分享
文章指標
  • 點擊次數:
  • 下載次數:
  • HTML閱讀次數:
  • 引用次數:
歷史
  • 收稿日期:2020-05-22
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-03-10
  • 出版日期: