亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于機(jī)器視覺(jué)的玉米苗期多條作物行線(xiàn)檢測(cè)算法
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0700400、2017YFD0700402)、北京市博士后工作經(jīng)費(fèi)項(xiàng)目(2018-ZZ-061)和中國(guó)博士后科學(xué)基金項(xiàng)目(2018M641257)


Detection Algorithm of Multiple Crop Row Lines Based on Machine Vision in Maize Seedling Stage
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為滿(mǎn)足玉米苗期中耕、追肥等田間管理環(huán)節(jié)的自主導(dǎo)航行走需求,研究了基于機(jī)器視覺(jué)的多條作物行線(xiàn)實(shí)時(shí)檢測(cè)技術(shù)。首先,基于綠色分量增強(qiáng)法、分割閾值優(yōu)化法和形態(tài)特征分析法,對(duì)圖像分別進(jìn)行灰度化、二值化和去噪等預(yù)處理,該預(yù)處理結(jié)果不受自然光照變化、陰影、降水/積水、播種模式等影響,對(duì)細(xì)密狀雜草干擾或植株冠層交疊條件下作物行間分界間隙的清理效果較好,對(duì)小尺寸噪聲、行間零散分布的圓形葉片類(lèi)雜草噪聲以及呈橫向生長(zhǎng)狀或聚集狀的雜草噪聲也有較好的清除效果。然后,將二值圖像沿縱坐標(biāo)均分為20個(gè)水平條,在各水平條內(nèi)部建立目標(biāo)區(qū)域的水平間距、水平跨度等特征參數(shù),并跨水平條建立目標(biāo)區(qū)域間的垂直間距、趨勢(shì)角、覆蓋寬度等特征參數(shù),基于以上參數(shù)在行內(nèi)和行間分布的差異性,完成各水平條中隸屬于不同作物行的目標(biāo)區(qū)域的定位分割和不同水平條中隸屬于同一作物行的目標(biāo)區(qū)域的聚類(lèi),其分割聚類(lèi)效果良好。最后,基于離群特征點(diǎn)去除后的最小二乘法,進(jìn)行線(xiàn)性擬合并獲取作物行中心線(xiàn),結(jié)果表明,整體檢測(cè)準(zhǔn)確率不低于91.2%,單幀圖像處理時(shí)間不超過(guò)368ms,說(shuō)明采用本文方法可快速實(shí)現(xiàn)不同環(huán)境因素干擾下的多條作物行線(xiàn)的同步檢測(cè)。

    Abstract:

    In order to meet the requirements of autonomous navigation and walking in field management such as intertillage and topdressing in maize seedling stage, the real-time detection technology of multiple crop row lines based on machine vision was studied. First of all, based on green component enhancement method, improved Otsu algorithm of segmentation threshold optimization, variable threshold denoising method and morphological denoising method, pre-processing such as grayscale, binarization and denoising was carried out. The pre-processing was not affected by natural light changes, shadows, precipitation/ponding and planting pattern, which had a better cleaning effect on the inter-row space of crops under the condition of plant canopy overlap or the interference of finely fragmentary weeds, and a better removal effect on the noise of small size, round leaf weed with scattered distribution between crop rows and weed in the form of transverse growth or aggregation. And then, the binary image was divided into 20 horizontal bars along the ordinate direction. The characteristic parameters of horizontal spacing and horizontal span were established for target areas inside each horizontal bar, and the characteristic parameters of vertical spacing, trend angle and coverage width were established between target areas across horizontal bars. Based on the distribution difference of the above parameters between target areas within crop rows and ones across crop rows, the localization and segmentation of target areas belonging to different crop rows in each horizontal bar and the clustering of target areas belonging to the same crop row in different horizontal bars were completed, and good segmentation and clustering results was obtained. Finally, the centerlines of each crop row in current frame were obtained by linear fitting based on the least square method after removing outlier feature points. The test results showed that the overall detection accuracy was no less than 91.2%, and the single-frame image processing time was no more than 368ms, which can quickly realize the synchronous detection of multiple crop row lines under the interference of different environmental factors.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

王僑,孟志軍,付衛(wèi)強(qiáng),劉卉,張振國(guó).基于機(jī)器視覺(jué)的玉米苗期多條作物行線(xiàn)檢測(cè)算法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(4):208-220. WANG Qiao, MENG Zhijun, FU Weiqiang, LIU Hui, ZHANG Zhenguo. Detection Algorithm of Multiple Crop Row Lines Based on Machine Vision in Maize Seedling Stage[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):208-220.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-06-25
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10