亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于注意力機(jī)制和可變形卷積的雞只圖像實(shí)例分割提取
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFE0122200)


Instance Segmentation of Broiler Image Based on Attention Mechanism and Deformable Convolution
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為提高雞只個(gè)體輪廓分割提取的精度和準(zhǔn)確度,實(shí)現(xiàn)基于機(jī)器視覺技術(shù)的雞只行為、健康、福利狀態(tài)監(jiān)測(cè)等精準(zhǔn)畜牧業(yè)管理,保證相關(guān)監(jiān)測(cè)技術(shù)及決策的可靠性,針對(duì)疊層籠養(yǎng)環(huán)境下肉雞圖像的實(shí)例分割和輪廓提取問題,提出一種優(yōu)化的基于Mask R-CNN框架的實(shí)例分割方法,構(gòu)建了一種雞只圖像分割和輪廓提取網(wǎng)絡(luò),對(duì)雞群圖像進(jìn)行分割,從而實(shí)現(xiàn)雞只個(gè)體輪廓的提取。該網(wǎng)絡(luò)以注意力機(jī)制、可變形卷積的41層深度殘差網(wǎng)絡(luò)(ResNet)和特征金字塔網(wǎng)絡(luò)(Feature pyramid networks, FPN)相融合為主干網(wǎng)絡(luò),提取圖像特征,并經(jīng)區(qū)域生成網(wǎng)絡(luò)(Region proposal networks, RPN)提取感興趣區(qū)域(ROI),最后通過頭部網(wǎng)絡(luò)完成雞只目標(biāo)的分類、分割和邊框回歸。雞只圖像分割試驗(yàn)表明,與Mask R-CNN網(wǎng)絡(luò)相比,優(yōu)化后網(wǎng)絡(luò)模型精確率和精度均值分別從78.23%、84.48%提高到88.60%、90.37%,模型召回率為77.48%,可以實(shí)現(xiàn)雞只輪廓的像素級(jí)分割。本研究可為雞只福利狀態(tài)和雞只健康狀況的實(shí)時(shí)監(jiān)測(cè)提供技術(shù)支撐。

    Abstract:

    Segmentation and extraction of birds contour is the premise of precision livestock farming management, such as behavior, health, welfare status monitoring based on machine vision technology. The precision and accuracy of image segmentation directly affect the reliability of relevant monitoring technology and decision-making. An instance segmentation approach based on Mask R-CNN deep learning framework was proposed to solve broiler instance segmentation and contour extraction problems in stacked-cage henhouse. Furthermore, a broiler image segmentation and contour extraction network was constructed to segment broiler images and realize birds individual contour extraction. In this network, totally 41 layers deep residual network (ResNet) based on attention mechanism and deformable convolution was integrated with feature pyramid networks (FPN) as the backbone network to extract the image features, and regions of interest were extracted by region proposal networks. Finally, target classification, segmentation and box regression were realized through network heads. Broiler image segmentation experiment showed that compared with Mask R-CNN network, the average precision and mean accuracy of the optimized network were improved from 78.23% and 84.48% to 88.60% and 90.37%, respectively, and the recall rate of the model was 77.48%, which can realize the pixel level segmentation of chicken contour. The research result can provide technical support for the real-time monitoring of birds welfare and health status.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

方鵬,郝宏運(yùn),李騰飛,王紅英.基于注意力機(jī)制和可變形卷積的雞只圖像實(shí)例分割提取[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(4):257-265. FANG Peng, HAO Hongyun, LI Tengfei, WANG Hongying. Instance Segmentation of Broiler Image Based on Attention Mechanism and Deformable Convolution[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):257-265.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-04
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10