亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于光照度的農(nóng)田蒸散量估算方法研究
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

寧夏回族自治區(qū)重點研發(fā)計劃項目(2018NCZD0024)


Forecasting Method of Hay Evapotranspiration Based on Illuminance
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    針對實際蒸散量(Actual evapotranspiration,ETa)估算過程中太陽輻射測量設(shè)備昂貴、難以大量布署安裝,以及單元機器學習回歸算法精度低、泛化性能差的問題,提出了一種基于光照度的集成算法。首先,將光照度作為模型的輸入量代替太陽輻射,提出了基于光照度的晴朗指數(shù);提出了以極端梯度提升模型(Extreme gradient boosting,XGBoost)、分布式梯度提升框架(Light gradient boosting machine,LightGBM)、隨機森林回歸(Random forest regression,RFR)、支持向量回歸(Support vector regression,SVR)為基礎(chǔ)模型的實際蒸散量估算集成算法。結(jié)果表明:在農(nóng)田實際蒸散量的估算中光照度可以替代太陽輻射,通過單元模型和集成模型分別對比基于光照度和太陽輻射的ETa估算結(jié)果,兩者最大均方根誤差(RMSE)差值為0.031mm/h,決定系數(shù)(R2)的最大差值為0.053。晴朗指數(shù)有助于模型更好地學習不同天氣條件下的蒸散量數(shù)據(jù)分布特征,與未添加晴朗指數(shù)的集成模型估算結(jié)果相比,RMSE降低了0.028mm/h,R2提高了0.03。采用集成算法比單元模型算法性能有明顯提升,基于光照度的集成模型RMSE為0.037mm/h、R2為0.985。本文從估算蒸散量所需的數(shù)據(jù)源、特征量以及估算算法等多個角度進行了探索,為農(nóng)田蒸散量的估算提供了一種新思路。

    Abstract:

    For evapotranspiration (ETa) estimation, the solar radiation measurement equipment is expensive, it is hardly to deploy a large number of measurements, and the unit regression algorithm has low accuracy and poor generalization performance. An integrated algorithm based on illuminance was proposed to estimate ETa. Firstly, the illuminance instead of solar radiation was used as the input of the model, and a sunny index based on illuminance was proposed to improve the estimation effect. Secondly, an integrated algorithm that fused extreme gradient boosting model (XGBoost), light gradient boosting machine (LightGBM), random forest regression (RFR), support vector regression (SVR) was used to estimate the farmland actual evapotranspiration. The results showed that the illuminance could replace the solar radiation in the estimation of the actual evapotranspiration of farmland. The unit model and the integrated model were used to compare the ETa estimation results based on the illuminance and solar radiation, respectively. The maximum difference of root mean square error (RMSE) between the two methods was 0.031mm/h. The maximum difference of determination coefficient (R2) was 0.053. The sunny index helped the model better learn the distribution characteristics of evapotranspiration data under different weather conditions. Compared with the estimation result of the integrated model without adding sunny index, the RMSE was reduced by 0.028mm/h, and R2 was increased by 0.03. The performance of the integrated algorithm was significantly improved than that of the unit model algorithm. The optimal RMSE was 0.037mm/h and R2 was 0.985. The research explored the data sources, characteristic quantities and estimation algorithms required for estimating evapotranspiration, and provided a new idea for estimating farmland evapotranspiration.

    參考文獻
    相似文獻
    引證文獻
引用本文

蘇寶峰,張旭東,米志文,杜鶴娟.基于光照度的農(nóng)田蒸散量估算方法研究[J].農(nóng)業(yè)機械學報,2021,52(4):285-292,310. SU Baofeng, ZHANG Xudong, MI Zhiwen, DU Hejuan. Forecasting Method of Hay Evapotranspiration Based on Illuminance[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(4):285-292,310.

復制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-02
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-04-10
  • 出版日期: 2021-04-10