亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于EfficientNet與點云凸包特征的奶牛體況自動評分
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2019YFE0125600)、國家自然科學(xué)基金項目(32002227)和河南省科技攻關(guān)項目(192102110089)


Automatic Body Condition Scoring Method for Dairy Cows Based on EfficientNet and Convex Hull Feature of Point Cloud
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為進(jìn)一步提高奶牛體況自動評分精度,構(gòu)建了一種基于點云凸包距離的三維結(jié)構(gòu)特征圖,將其作為EfficientNet深度學(xué)習(xí)網(wǎng)絡(luò)的輸入,可實現(xiàn)奶牛體況自動評分誤差在0.25以內(nèi)識別的準(zhǔn)確率提升。首先,對獲取的奶牛背部深度圖像進(jìn)行預(yù)處理,得到含有主要體況信息從奶牛腰角骨到臀骨區(qū)域的點云;其次,對點云進(jìn)行體素化和凸包化,計算每個外圍體素到最近凸包面之間的距離,并投影至X-Y平面上,得到結(jié)構(gòu)特征圖;構(gòu)建EfficientNet網(wǎng)絡(luò)分類模型,采用鯨魚優(yōu)化算法(Whale optimization algorithm, WOA)對其縮放系數(shù)進(jìn)行優(yōu)化;最后,利用77頭奶牛的5119幅深度圖像對模型進(jìn)行訓(xùn)練、驗證與測試,數(shù)據(jù)集比例為5∶3∶2。結(jié)果表明,奶牛體況評分(BCS)范圍在2.25~4.00內(nèi),測試集中EfficientNet模型精準(zhǔn)識別的圖像達(dá)到73.12%,BCS識別誤差在0.25和0.50以內(nèi)的圖像占比分別為98.6%和99.31%,平均識別速率為3.441s/f,識別效果優(yōu)于MobileNet-V2、XceptionNet和LeNet-5等模型。該方法可實現(xiàn)規(guī)模化養(yǎng)殖場中奶牛個體體況的無接觸評定,具有精度高、適用性強、成本低等特點。

    Abstract:

    Depth images are increasingly used to detect the body condition of dairy cows to make breeding management decisions. The scoring method of individual dairy cows’ body condition based on deep learning can further improve the degree of automation of dairy cow body condition image analysis. In order to realize the accurate recognition of the individual body condition of dairy cows without contact, high accuracy and strong applicability based on depth images in the actual breeding environment, a body condition scoring method was proposed based on deep learning and point cloud convex hulling features. Firstly, the acquired back depth image of the cow was preprocessed, included target extraction, target rotation, and acquired hindquarters images to obtain a back point cloud of the cow, containing the main body condition information. And then the hindquarters point cloud was voxelized and the convex hull feature image was obtained. In order to represent the fat and thin degree of different cows, and finally build a variety of convolutional neural network classification models, accuracy rate and average F1 value was used to optimize the model to further improve the accuracy of individual body condition recognition of dairy cows. The test results showed that the EfficientNet network can effectively identify the body condition of cows with a BCS value in the range of 2.25~4.00. The image account of recognition accuracy errors of 0.25 and 0.50 were 98.6% and 99.31%, respectively. The average F1 value was 98% and 99%, and the average recognition rate was 3.441s/f. Compared with the MobileNet-V2, XceptionNet, and LeNet-5 network models, the above indicators of the proposed method were better. The method can realize the non-contact assessment of the individual body condition of dairy cows in the breeding farm, and had the characteristics of high accuracy, strong applicability, and low cost.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

趙凱旋,劉曉航,姬江濤.基于EfficientNet與點云凸包特征的奶牛體況自動評分[J].農(nóng)業(yè)機械學(xué)報,2021,52(5):192-201,73. ZHAO Kaixuan, LIU Xiaohang, JI Jiangtao. Automatic Body Condition Scoring Method for Dairy Cows Based on EfficientNet and Convex Hull Feature of Point Cloud[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):192-201,73.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-06
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼