亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于高光譜成像的油茶籽含油率檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2016YFD0701501)


Detection Method of Oil Content of Camellia oleifera Seed Based on Hyperspectral Imaging
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了快速準(zhǔn)確地檢測油茶籽含油率、解決傳統(tǒng)檢測手段費時費力等問題,提出了一種基于高光譜成像技術(shù)的油茶籽含油率檢測方法。應(yīng)用光譜集Ⅰ(400~1000nm)和光譜集Ⅱ(900~1700nm)兩組高光譜成像系統(tǒng)采集油茶籽的漫反射高光譜圖像,并結(jié)合化學(xué)計量學(xué)方法建立油茶籽含油率的回歸預(yù)測模型。結(jié)果顯示,在不經(jīng)預(yù)處理的情況下,兩組光譜集數(shù)據(jù)建立的偏最小二乘回歸模型精度最高:光譜集Ⅰ的預(yù)測集決定系數(shù)R2p為0.681,均方根誤差(RMSEP)為2.89%;光譜集Ⅱ的R2p為0.740,RMSEP為2.92%。通過對比7種不同的變量選擇方法發(fā)現(xiàn),兩組光譜集采用遺傳算法篩選特征波長后建立的PLSR模型精度最高:光譜集Ⅰ的R2p為0.694,RMSEP為2.82%;光譜集Ⅱ的R2p為0.779,RMSEP為2.54%。通過對比光譜集Ⅰ和光譜集Ⅱ的建模效果發(fā)現(xiàn),使用光譜集Ⅱ建立的PLSR模型的性能更好,因此900~1700nm波段比400~1000nm波段更適用于油茶籽含油率的檢測,進一步驗證了利用高光譜成像技術(shù)實現(xiàn)油茶籽含油率預(yù)測值分布可視化的可行性。

    Abstract:

    In order to quickly and accurately detect the oil content of Camellia oleifera seed and solve the time-consuming and laborious problems of traditional detection methods, a method for detecting the oil content of Camellia oleifera seed based on hyperspectral imagery (HSI) was proposed. Two sets of hyperspectral imaging systems, spectral setⅠ (400~1000nm) and spectral setⅡ (900~1700nm), were used to collect diffuse reflectance hyperspectral images of Camellia oleifera seed, and the regression prediction model of oil content of Camellia oleifera seed was established in combination with chemometrics. The results showed that the partial least squares regression model (PLSR) established by the two sets of spectral data without pretreatment had the highest accuracy: the determination coefficient of prediction (R2p) of the spectral setⅠwas 0.681, and the root mean square error of prediction set (RMSEP) was 2.89%;R2p of spectral setⅡwas 0.740, and RMSEP was 2.92%. Comparing seven different variable selection methods, it was found that the two sets of spectral sets used genetic algorithm (GA) to filter the characteristic wavelength to establish the PLSR model with the highest accuracy: the spectral setⅠhad R2p of 0.694 and RMSEP of 2.82%;the spectral setⅡhad R2p of 0.779 and RMSEP of 2.54%. Comparing the modeling effects of spectral setⅠand spectral setⅡ, it was found that the performance of the PLSR model established by spectral setⅡwas better than that of the spectral setⅠ, so the band of 900~1700nm was more suitable for the oil content detection of Camellia oleifera seed than the band of 400~1000nm. Besides, the feasibility of using HSI to visualize the distribution of the predicted value of the oil content ofCamellia oleifera seed was further verified. This result can provide a method for the rapid detection of the oil content distribution of Camellia oleifera seed and the selection of high-quality its varieties.

    參考文獻
    相似文獻
    引證文獻
引用本文

周宏平,胡逸磊,姜洪喆,許林云,王影.基于高光譜成像的油茶籽含油率檢測方法[J].農(nóng)業(yè)機械學(xué)報,2021,52(5):308-315. ZHOU Hongping, HU Yilei, JIANG Hongzhe, XU Linyun, WANG Ying. Detection Method of Oil Content of Camellia oleifera Seed Based on Hyperspectral Imaging[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(5):308-315.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-07-15
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-05-10
  • 出版日期:
文章二維碼