亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

農(nóng)作物病蟲害識別關(guān)鍵技術(shù)研究綜述
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

南京農(nóng)業(yè)大學(xué)高層次人才引進(jìn)科研啟動項目(106-804005)、國家自然科學(xué)基金項目(61502236)和中央高?;究蒲袠I(yè)務(wù)費專項資金項目(KYLH202006、KYZ201914)


Review of Key Techniques for Crop Disease and Pest Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    農(nóng)作物病蟲害的預(yù)防與治理對農(nóng)業(yè)生產(chǎn)具有十分重要的作用,病蟲害防治工作的前提是準(zhǔn)確識別病蟲害目標(biāo)。傳統(tǒng)的病蟲害識別方法包括人工識別和儀器識別,傳統(tǒng)識別方法在識別效率、識別準(zhǔn)確性、應(yīng)用場景等方面已無法滿足科學(xué)研究和生產(chǎn)的需要。深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個重要分支,能夠自動、高效、準(zhǔn)確地從大規(guī)模數(shù)據(jù)集中學(xué)習(xí)到待識別目標(biāo)的特征,從而替代傳統(tǒng)依賴手工提取圖像底層特征的識別方法,因此,將結(jié)合圖像處理的深度學(xué)習(xí)技術(shù)應(yīng)用于農(nóng)作物病蟲害識別是未來精準(zhǔn)農(nóng)業(yè)發(fā)展的必然趨勢。農(nóng)作物病蟲害識別所涉及的關(guān)鍵技術(shù)以農(nóng)作物病蟲害數(shù)據(jù)為基礎(chǔ)展開,通過闡述病蟲害數(shù)據(jù)獲取、數(shù)據(jù)預(yù)處理、數(shù)據(jù)增強(qiáng)、深度學(xué)習(xí)網(wǎng)絡(luò)優(yōu)化、識別結(jié)果可視化、識別結(jié)果可解釋性、預(yù)測預(yù)報等關(guān)鍵技術(shù)的研究現(xiàn)狀,歸納與總結(jié)了各關(guān)鍵技術(shù)應(yīng)用中存在的問題和面臨的挑戰(zhàn),最后指出農(nóng)作物病蟲害識別未來的研究發(fā)展方向,即在數(shù)據(jù)獲取方面,構(gòu)建多源農(nóng)業(yè)數(shù)據(jù)集和積極打造數(shù)據(jù)共享資源平臺,在數(shù)據(jù)處理方面,結(jié)合遷移學(xué)習(xí)算法、使用新型數(shù)據(jù)增強(qiáng)方法,在數(shù)據(jù)應(yīng)用方面,積極開展可視化、可解釋性和預(yù)測預(yù)報等工作。

    Abstract:

    Preventing and managing crop disease and pest has significant impacts on agricultural production. The prerequisite for disease and pest control is accurate detection. Traditional crop disease and pest detection methods rely on human labors and instructions. However, these methods can no longer meet the requirements of scientific research and production, such as detection efficiency, accuracy, and application scenarios. As a main stream of machine learning, deep learning can extract features of objects from large-scale datasets automatically and efficiently, thereby releasing traditional methods from manual feature extraction. Applying deep learning, combined with image processing techniques, to detect crop disease and pest becomes an inevitable trend of precision agriculture in the future. The key techniques in crop disease and pest detection depend on agricultural data. After reviewing the state of the art of key techniques in this domain, including data acquisition, data pre-processing, data augmentation, deep learning network optimization, data visualization, and explainability of results, the challenges of applying these key techniques were detected and summarized. Lastly, potential solutions were explored to highlight the future research lines in this domain, including defining multi-view agricultural datasets, combining transfer learning, adopting new data augmentation methods, and considering visualization and explanation issues.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

翟肇裕,曹益飛,徐煥良,袁培森,王浩云.農(nóng)作物病蟲害識別關(guān)鍵技術(shù)研究綜述[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(7):1-18. ZHAI Zhaoyu, CAO Yifei, XU Huanliang, YUAN Peisen, WANG Haoyun. Review of Key Techniques for Crop Disease and Pest Detection[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):1-18.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-11
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期:
文章二維碼