亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于無(wú)人機(jī)多光譜遙感的馬尾松林葉面積指數(shù)估測(cè)
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

國(guó)家自然科學(xué)基金項(xiàng)目(31770760、41401385)


Leaf Area Index Estimation of Masson Pine (Pinus massoniana) Forests Based on Multispectral Remote Sensing of UAV
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    快速、準(zhǔn)確、無(wú)損估測(cè)馬尾松林葉面積指數(shù)對(duì)精準(zhǔn)林業(yè)管理具有重要意義。以小型低空無(wú)人機(jī)為平臺(tái),搭載RedEdge多光譜傳感器,獲取福建省西部馬尾松林多光譜影像,運(yùn)用重采樣的方式獲取并計(jì)算不同空間分辨率(0.08、0.1、0.2、0.5、1、2、5m)下的植被指數(shù),結(jié)合地面實(shí)測(cè)LAI數(shù)據(jù),分析其與植被指數(shù)的相關(guān)性,進(jìn)而采用線性模型(LR)、多元逐步回歸模型(MSR)、隨機(jī)森林模型(RF)、支持向量機(jī)模型(SVM)和人工神經(jīng)網(wǎng)絡(luò)模型(BP)構(gòu)建不同空間分辨率下的馬尾松林LAI估測(cè)模型,以決定系數(shù)(R2)、均方根誤差(RMSE)、相對(duì)分析誤差(RPD)和總體精度(TA)來(lái)評(píng)價(jià)估測(cè)模型精度,從而確定最佳空間分辨率和最佳模型。結(jié)果表明,不同空間分辨率下LAI與植被指數(shù)均呈極顯著相關(guān)(p<0.01);多變量模型(MSR、RF、SVM、BP)的調(diào)整R2平均值高于LR模型;隨著空間分辨率的增加,不同模型的R2整體上呈先增大后減小的趨勢(shì);當(dāng)空間分辨率為0.5m時(shí),利用植被指數(shù)建立的RF模型為馬尾松林LAI的最佳估測(cè)模型,RF模型的調(diào)整R2為0.766,模型估測(cè)的R2、RMSE、RPD和TA分別為0.554、0.421、1.523和81.95%。本研究可為無(wú)人機(jī)多光譜遙感反演森林LAI表型參數(shù)的空間分辨率和模型選擇提供理論參考。

    Abstract:

    Fast, accurate and non-destructive estimation of the leaf area index (LAI) of Masson pine forest is of great significance for precise forestry management. In order to estimate LAI of Masson pine forest, the small low-altitude unmanned aerial vehicle (UAV) platform with the American MicaSense RedEdge multi-spectral sensor was used to obtain the multi-spectral image in western Fujian. Eight different kinds of vegetation indices, green normalized vegetation index (GNDVI), green ratio vegetation index (GRVI), modified soil adjusted vegetation index (MSAVI), normalized difference vegetation index (NDVI), renormalized difference vegetation index (RDVI), ratio vegetation index (RVI), structure insensitive pigment index (SIPI) and visible atmospherically resistant index (VARI) were calculated from imagines with seven spatial resolutions (0.08m, 0.1m, 0.2m, 0.5m, 1m, 2m and 5m). The correlation between groundmeasured LAI and different vegetation indices from different spatial resolutions imagines were analyzed. Five models, linear regression (LR), multiple stepwise (MSR), random forest (RF), support vector machine (SVM) and artificial neural network (BP) were used to construct LAI estimation model, and coefficients of determination (R2), root mean square errors (RMSE), residual predictive deviation (RPD) and total accuracy (TA) were used to determine the optimal spatial resolution and optimal model for computing Masson pine forest LAI. The results showed that LAI values and vegetation indices from different spatial resolutions imagines were significantly correlated (p<0.01). The adjusted R2 average values of the multivariate models (MSR, RF, SVM, BP) were higher than that of the LR model. The R2 of different models was generally increased first and then decreased with the increase of spatial resolution. RF model was the optimal model for Masson pine forest when the spatial resolution was 0.5m. The highest accuracy for RF model with R2 of 0.766 for calibration, and with R2 of 0.554, RMSE of 0.421, RPD of 1.523, and TA of 81.95% for validation. The research result can provide a theoretical reference for the spatial resolution and model selection in the inversion of forest LAI phenotypic parameters by UAV multi-spectral remote sensing image.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

姚雄,余坤勇,劉健.基于無(wú)人機(jī)多光譜遙感的馬尾松林葉面積指數(shù)估測(cè)[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(7):213-221. YAO Xiong, YU Kunyong, LIU Jian. Leaf Area Index Estimation of Masson Pine (Pinus massoniana) Forests Based on Multispectral Remote Sensing of UAV[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):213-221.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-11-21
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期: