亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于Attention_DenseCNN的水稻問答系統(tǒng)問句分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家重點研發(fā)計劃項目(2018YFD0300309)、江蘇大學農(nóng)業(yè)裝備學部項目和內(nèi)蒙古民族大學科學研究基金項目(NMDYB18028、NMDYB18026、NMDYB17138)


Classification Technology of Rice Questions in Question Answer System Based on Attention_DenseCNN
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了解決“中國農(nóng)技推廣APP”問答社區(qū)中水稻提問數(shù)據(jù)快速自動分類的問題,提出一種基于Attention_DenseCNN的水稻文本分類方法。根據(jù)水稻文本具備的特征,采用Word2vec方法對文本數(shù)據(jù)進行處理與分析,并結(jié)合農(nóng)業(yè)分詞詞典對文本數(shù)據(jù)進行向量化處理,采用Word2vec方法能夠有效地解決文本的高維性和稀疏性問題。對卷積神經(jīng)網(wǎng)絡(luò)(CNN)上下游卷積塊之間建立一條稠密的鏈接,并結(jié)合注意力機制(Attention),使文本中的關(guān)鍵詞特征得以充分體現(xiàn),使文本分類模型具有更好的文本特征提取精度,從而提高了分類精確率。試驗表明:基于Attention_DenseCNN的水稻問句分類模型可以提高文本特征的利用率、減少特征丟失,能夠快速、準確地對水稻問句文本進行自動分類,其分類精確率及F1值分別為95.6%和94.9%,與其他7種神經(jīng)網(wǎng)絡(luò)問句分類方法相比,分類效果明顯提升。

    Abstract:

    In the QA community of Chinese Agricultural Technology Promotion APP, thousands of rice text data questions are added every day, and the rapid and automatic classification of questions is a key step to realize the intelligent QA system of rice. However, due to the high dimensional sparsity of text data and the particularity of agricultural problems, the classification of rice questions faces difficult challenges. In order to improve the classification performance of rice question text, a convolution text classification method with dense connection was proposed. A dense connection between upstream and downstream convolution blocks was established, which enabled the model to synthesize large-scale features from small-scale features. Combined with the agricultural word segmentation dictionary, the text data was segmented into 100-dimensional word vectors by Word2vec. Neural network model’s parameters for question classification in rice question answering system were obtained by training text data with dense concatenated convolution model and attention mechanism. The experimental results showed that the text classification model based on Attention_DenseCNN can optimize the text’s representation and feature extraction, and also it can automatically classify the rice question text with accuracy of 95.6% and F1 value of 94.9%. Compared with the other seven text classification methods, the classification performance had obvious advantages.

    參考文獻
    相似文獻
    引證文獻
引用本文

王郝日欽,吳華瑞,馮帥,劉志超,許童羽.基于Attention_DenseCNN的水稻問答系統(tǒng)問句分類[J].農(nóng)業(yè)機械學報,2021,52(7):237-243. WANG Haoriqin, WU Huarui, FENG Shuai, LIU Zhichao, XU Tongyu. Classification Technology of Rice Questions in Question Answer System Based on Attention_DenseCNN[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):237-243.

復(fù)制
分享
文章指標
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-19
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期: