亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于BERT-LEAM模型的食品安全法規(guī)問題多標(biāo)簽分類
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項(xiàng)目:

國家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC1601803)


Multi-label Classification of Food Safety Regulatory Issues Based on BERT-LEAM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    在食品安全法規(guī)問答系統(tǒng)中,食品安全法規(guī)問題的單標(biāo)簽文本分類不能完全概括問題所包含的有效信息,為了改進(jìn)單標(biāo)簽文本分類效果,根據(jù)問題所涉及食品安全角度和層次的不同,提出一種基于BERT-LEAM(Bidirectional encoder representational from transformers-label embedding attentive model)的多標(biāo)簽文本分類方法。采用多角度、分層次的多標(biāo)簽標(biāo)注方法將單個(gè)問題文本賦予多個(gè)標(biāo)簽,并引入BERT預(yù)訓(xùn)練語言模型表示上下文特征信息, 通過Attention機(jī)制學(xué)習(xí)標(biāo)簽與文本的依賴關(guān)系,進(jìn)行Word embedding的聚合,將標(biāo)簽應(yīng)用到文本分類過程中。實(shí)驗(yàn)表明,在粗粒度多標(biāo)簽數(shù)據(jù)集上的分類效果明顯優(yōu)于細(xì)粒度多標(biāo)簽數(shù)據(jù)集上的分類效果,BERT進(jìn)行文本特征表示的方法優(yōu)于Word2Vec方法,采用BERT-LEAM模型的分類方法在粗粒度多標(biāo)簽數(shù)據(jù)集與細(xì)粒度多標(biāo)簽數(shù)據(jù)集的F1-W值分別為93.35%和79.81%,其分類效果優(yōu)于其他分類模型。

    Abstract:

    Effective classification of food safety regulatory issues is the key to the realization of the food safety regulatory question and answer system. In order to improve the effect of single label text classification, a multi-label text classification method based on bidirectional encoder representational from transformers-label embedding attentive model (BERT-LEAM) was proposed according to the different food safety perspectives and levels involved in the problem. A multi-angle and hierarchical multi-label labeling method was used to assign multiple labels to a single question text, and the pre-training language model of BERT was introduced to represent the context feature information. The dependency between the label and the text was learned by attention mechanism, the word was processed by embedding aggregation, and the tag was applied to the text classification process. The experimental results showed that the classification effect on the coarse-grained multi-label data set was better than that on the fine-grained multi-label data set. The method of text feature representation by BERT model was better than that of Word2Vec. The F1-W values of coarse-grained multi-label data set and fine-grained multi-label data set were 93.35% and 79.81%, respectively, which was better than other classification methods model. The problem classification based on food safety regulations question answering system was realized effectively by using the method of BERT-LEAM classification, which laid the foundation for the implementation of the follow-up question answering system.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

鄭麗敏,喬振鐸,田立軍,楊璐.基于BERT-LEAM模型的食品安全法規(guī)問題多標(biāo)簽分類[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(7):244-250,158. ZHENG Limin, QIAO Zhenduo, TIAN Lijun, YANG Lu. Multi-label Classification of Food Safety Regulatory Issues Based on BERT-LEAM[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(7):244-250,158.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2020-09-29
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-07-10
  • 出版日期: