亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

遮擋條件下基于MSF-PPD網(wǎng)絡(luò)的綠蘿葉片點(diǎn)云補(bǔ)全方法
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類號(hào):

基金項(xiàng)目:

南京農(nóng)業(yè)大學(xué)-塔里木大學(xué)科研合作聯(lián)合基金項(xiàng)目(NNLH202006)、中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金項(xiàng)目(KYLH202006、KYZ201914)、新疆生產(chǎn)建設(shè)兵團(tuán)南疆重點(diǎn)產(chǎn)業(yè)支撐計(jì)劃項(xiàng)目(2017DB006)和國(guó)家自然科學(xué)基金項(xiàng)目(31601545)


Point Cloud Complementation Method of Epipremnum aureum Leaves under Occlusion Conditions Based on MSF-PPD Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    針對(duì)在自然場(chǎng)景中,由于遮擋、視角限制和操作不當(dāng)?shù)葐?wèn)題,導(dǎo)致傳感器獲取的植物或器官點(diǎn)云不完整,提出了一種基于多尺度特征提取模塊結(jié)合點(diǎn)云金字塔解碼器(Multiscale feature extraction model with point cloud pyramid decoder,MSF-PPD)的葉片形狀補(bǔ)全網(wǎng)絡(luò)。首先,采用多尺度特征提取模塊實(shí)現(xiàn)不同維度特征信息的全局提取和融合,其次,通過(guò)點(diǎn)云金字塔解碼器進(jìn)行葉片點(diǎn)云的多階段生成補(bǔ)全,最終得到完整的目標(biāo)葉片形狀。使用曲面參數(shù)方程構(gòu)建綠蘿葉片仿真模型庫(kù),并將其離散成點(diǎn)云作為網(wǎng)絡(luò)模型訓(xùn)練的訓(xùn)練集和驗(yàn)證集,使用Kinect v2相機(jī)獲取綠蘿葉片點(diǎn)云作為網(wǎng)絡(luò)模型補(bǔ)全性能評(píng)估的測(cè)試集。試驗(yàn)結(jié)果表明,本文網(wǎng)絡(luò)結(jié)構(gòu)對(duì)葉片點(diǎn)云補(bǔ)全的效果理想,證明本文方法能夠?qū)φ趽跚闆r下的綠蘿葉片進(jìn)行高效、完整的補(bǔ)全。

    Abstract:

    For the natural scenes, the point clouds of plants or organs acquired by sensors are incomplete due to the problems of occlusion, viewpoint limitation and improper operation. A multi-scale feature extraction model with point cloud pyramid decoder (MSF-PPD) network was proposed for leaf shape complementation. Firstly, the multi-scale feature extraction module was used to achieve the global extraction and fusion of different dimensional feature information, and secondly, the multi-stage generation of leaf point cloud was complemented by the point cloud pyramid decoder to finally obtain the complete target leaf shape. A library of Epipremnum aureum leaf simulation models was constructed by using surface parametric equations and discretized into point clouds as the training set and validation set for network model training, and the Epipremnum aureum leaf point clouds were obtained by using the Kinect v2 camera as the test set for model complementary performance evaluation. The experimental results showed that the network structure had an ideal effect on leaf point cloud complementation, which proved that the method proposed was able to perform efficient and complete complementation of Epipremnum aureum leaf under the obscured situation.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

肖海鴻,徐煥良,馬仕航,陳玲,王江波,王浩云.遮擋條件下基于MSF-PPD網(wǎng)絡(luò)的綠蘿葉片點(diǎn)云補(bǔ)全方法[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):141-148. XIAO Haihong, XU Huanliang, MA Shihang, CHEN Ling, WANG Jiangbo, WANG Haoyun. Point Cloud Complementation Method of Epipremnum aureum Leaves under Occlusion Conditions Based on MSF-PPD Network[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):141-148.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-01-24
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼