亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

GEE環(huán)境下融合主被動遙感數(shù)據(jù)的冬小麥識別技術(shù)
CSTR:
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

國家自然科學(xué)基金項目(51779099)、國家自然科學(xué)基金面上項目(41721333)、河南省科技攻關(guān)重點項目(192102310270)和河南理工大學(xué)博士基金項目(B2017-09)


Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    遙感技術(shù)已成為大宗作物種植面積提取的有效手段。為避免冬小麥提取中受光學(xué)數(shù)據(jù)缺乏的影響,基于隨機(jī)森林算法(RF)和Google Earth Engine(GEE)云平臺,探索時間序列Sentinel-1合成孔徑雷達(dá)(SAR)數(shù)據(jù)后向散射系數(shù)對冬小麥提取效果,并融合Sentinel-1、2主被動遙感數(shù)據(jù),研究后向散射系數(shù)、光譜特征、植被指數(shù)特征與紋理特征的不同組合對冬小麥識別精度的改善情況。結(jié)果表明:僅融合多時相Sentinel-1 SAR數(shù)據(jù)時,分類總體精度為85.93%,Kappa系數(shù)為0.75,冬小麥識別精度達(dá)到95%以上。融合多時相SAR數(shù)據(jù)與單時相光學(xué)數(shù)據(jù),在充分利用極化信息和光譜信息進(jìn)行分類后,分類總體精度為95.78%,Kappa系數(shù)為0.92,比多時相SAR分類結(jié)果分別提高9.85個百分點和約22.67%,對冬小麥的識別精度提高約2個百分點。通過分析不同特征組合情況下紋理特征對分類的影響,發(fā)現(xiàn)紋理特征對冬小麥的識別精度影響程度較小。

    Abstract:

    Remote sensing technology had become an effective method to extract planting area of bulk crop. With the aim to avoid the lack of optical data in winter wheat extraction, the validity of time series Sentinel-1 synthetic aperture radar(SAR)backscattering coefficients on winter wheat identification was explored based on random forest(RF)and Google Earth Engine(GEE)cloud platform. And Sentinel-1 and 2 active and passive remote sensing data was integrated to explore the improvement of winter wheat identification accuracy on combining various features groups of backscattering coefficients, spectral features, vegetation index features and texture features. The result indicated that the overall classification accuracy of the monthly average multi-temporal Sentinel-1 SAR polarization data was 85.93%, the Kappa coefficient was 0.75 and the winter wheat identification accuracy was above 95%. By integrating the monthly average time serious multi-temporal SAR data and the single-temporal optical data, the overall classification accuracy was 95.78% and the Kappa coefficient were 0.92. Integrating data fully used the polarization and spectral information and the overall classification accuracy and the Kappa coefficient were improved by 9.85 percentage points and 22.67%. The identification accuracy of winter wheat was improved by about 2 percentage points. The identification accuracy of winter wheat was affected by less than 0.9% by analyzing the influence of texture features under different features combinations. Therefore, the method and platform used accurately and efficiently obtained winter wheat planting area and it had a good promotion value.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

馬戰(zhàn)林,劉昌華,薛華柱,李靜茹,房旭,周俊利. GEE環(huán)境下融合主被動遙感數(shù)據(jù)的冬小麥識別技術(shù)[J].農(nóng)業(yè)機(jī)械學(xué)報,2021,52(9):195-205. MA Zhanlin, LIU Changhua, XUE Huazhu, LI Jingru, FANG Xu, ZHOU Junli. Identification of Winter Wheat by Integrating Active and Passive Remote Sensing Data Based on Google Earth Engine Platform[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):195-205.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼