亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于改進(jìn)CenterNet的玉米雄蕊無(wú)人機(jī)遙感圖像識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFCO403302)和楊凌示范區(qū)科技計(jì)劃項(xiàng)目(2020-46)


Improved CenterNet Based Maize Tassel Recognition for UAV Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪(fǎng)問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    為準(zhǔn)確識(shí)別抽雄期玉米雄蕊實(shí)現(xiàn)監(jiān)測(cè)玉米長(zhǎng)勢(shì)、植株計(jì)數(shù)和估產(chǎn),基于無(wú)錨框的CenterNet目標(biāo)檢測(cè)模型,通過(guò)分析玉米雄蕊的尺寸分布,并在特征提取網(wǎng)絡(luò)中添加位置坐標(biāo),從而提出一種改進(jìn)的玉米雄蕊識(shí)別模型。針對(duì)雄蕊尺寸較小的特點(diǎn),去除CenterNet網(wǎng)絡(luò)中對(duì)圖像尺度縮小的特征提取模塊,在降低模型參數(shù)的同時(shí),提高檢測(cè)速度。在CenterNet特征提取模型中添加位置信息,提高定位精度,降低雄蕊漏檢率。試驗(yàn)結(jié)果表明,與有錨框的YOLO v4、Faster R-CNN模型相比,改進(jìn)的CenterNet雄蕊檢測(cè)模型對(duì)無(wú)人機(jī)遙感影像的玉米雄蕊識(shí)別精度達(dá)到92.4%,分別高于Faster R-CNN和YOLO v4模型26.22、3.42個(gè)百分點(diǎn);檢測(cè)速度為36f/s,分別比Faster R-CNN和YOLO v4模型高32、23f/s。本文方法能夠準(zhǔn)確地檢測(cè)無(wú)人機(jī)遙感圖像中尺寸較小的玉米雄蕊,為玉米抽雄期的農(nóng)情監(jiān)測(cè)提供參考。

    Abstract:

    In order to accurately identify the tassels of maize at tasseling stage, the growth, plant count and yield of maize should be monitored, based on the CenterNet object detection model without anchor frame, an improved maize tassel recognition model was proposed by analyzing the size distribution of maize tassels and adding position coordinates in the feature extraction network. According to the small tassel size, the feature extraction module for image scale reduction in CenterNet network was removed to reduce the model parameters and improve the detection speed. The location information was added to the CenterNet feature extraction model to improve the positioning accuracy and reduce the rate of tassel missed detection. The experimental results showed that, compared with YOLO v4 and Faster R-CNN with anchor frame, the improved CenterNet model achieved 92.4% accuracy in identifying maize tassels from UAV remote sensing images, which were 26.22 and 3.42 percentage points higher than that of Faster R-CNN and YOLO v4 models, respectively. The detection speed was 36f/s, 32f/s and 23f/s higher than that of the Faster R-CNN and YOLO v4 models, respectively. The method proposed can accurately detect the smaller tassels in the UAV remote sensing image, and provide a reference for the monitoring of agricultural situation in the tasseling stage of maize.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

楊蜀秦,劉江川,徐可可,桑雪,寧紀(jì)鋒,張智韜.基于改進(jìn)CenterNet的玉米雄蕊無(wú)人機(jī)遙感圖像識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):206-212. YANG Shuqin, LIU Jiangchuan, XU Keke, SANG Xue, NING Jifeng, ZHANG Zhitao. Improved CenterNet Based Maize Tassel Recognition for UAV Remote Sensing Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):206-212.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-05-27
  • 最后修改日期:
  • 錄用日期:
  • 在線(xiàn)發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼