亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于卷積注意力的無(wú)人機(jī)多光譜遙感影像地膜農(nóng)田識(shí)別
CSTR:
作者:
作者單位:

作者簡(jiǎn)介:

通訊作者:

中圖分類(lèi)號(hào):

基金項(xiàng)目:

國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFC0403203)、陜西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2020NY-098)、楊凌示范區(qū)科技計(jì)劃項(xiàng)目(2020-46)和陜西省大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計(jì)劃項(xiàng)目(S202010712482)


Convolutional Attention Based Plastic Mulching Farmland Identification via UAV Multispectral Remote Sensing Image
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問(wèn)統(tǒng)計(jì)
  • |
  • 參考文獻(xiàn)
  • |
  • 相似文獻(xiàn)
  • |
  • 引證文獻(xiàn)
  • |
  • 資源附件
  • |
  • 文章評(píng)論
    摘要:

    監(jiān)測(cè)地膜覆蓋農(nóng)田的分布對(duì)準(zhǔn)確評(píng)估由其導(dǎo)致的區(qū)域氣候和生態(tài)環(huán)境變化有著重要作用,基于DeepLabv3+網(wǎng)絡(luò),通過(guò)學(xué)習(xí)面向地膜語(yǔ)義分割的通道注意力和空間注意力特征,提出一種適用于判斷農(nóng)田是否覆膜的改進(jìn)深度語(yǔ)義分割模型,實(shí)現(xiàn)對(duì)無(wú)人機(jī)多光譜遙感影像中地膜農(nóng)田的有效分割。以內(nèi)蒙古自治區(qū)河套灌區(qū)西部解放閘灌區(qū)中沙壕渠灌域2018—2019年4塊實(shí)驗(yàn)田的無(wú)人機(jī)多光譜遙感影像為研究數(shù)據(jù),與可見(jiàn)光遙感影像的識(shí)別結(jié)果進(jìn)行對(duì)比,同時(shí)考慮不同年份地膜農(nóng)田表觀的變化,設(shè)計(jì)了2組實(shí)驗(yàn)方案,分別用于驗(yàn)證模型的泛化性能和增強(qiáng)模型的分類(lèi)精度。結(jié)果表明,改進(jìn)的DeepLabv3+語(yǔ)義分割模型對(duì)多光譜遙感影像的識(shí)別效果比可見(jiàn)光高7.1個(gè)百分點(diǎn)。同時(shí)考慮地膜農(nóng)田表觀變化的深度語(yǔ)義分割模型具有更高的分類(lèi)精度,其平均像素精度超出未考慮地膜農(nóng)田表觀變化時(shí)7.7個(gè)百分點(diǎn),表明訓(xùn)練數(shù)據(jù)的多樣性有助于提高地膜農(nóng)田的識(shí)別精度。其次,改進(jìn)的DeepLabv3+語(yǔ)義分割模型能夠自適應(yīng)學(xué)習(xí)地膜注意力,在2組實(shí)驗(yàn)中,分類(lèi)精度均優(yōu)于原始的DeepLabv3+模型,表明注意力機(jī)制能夠增加深度語(yǔ)義分割模型的自適應(yīng)性,從而提升分類(lèi)精度。本文提出的方法能夠從復(fù)雜的場(chǎng)景中精準(zhǔn)識(shí)別地膜農(nóng)田。

    Abstract:

    Monitoring of planting distribution of plastic mulching farmland plays an important role in assessing the regional climate and ecological environment changes caused by it. Based on DeepLabv3+, an improved deep semantic segmentation model for plastic mulching farmland was proposed by learning the channel attention and spatial attention features for plastic mulching semantic segmentation. It can effectively segment plastic mulching farmland for unmanned aerial vehicle (UAV) multispectral remote sensing image. The UAV multispectral remote sensing images of four experimental plots during 2018—2019 were taken as the research data. The research area was Shahaoqu Irrigation Farmland in the Hetao Irrigation District, Inner Mongolia Autonomous Region. And compared with the recognition result of visible remote sensing image, by considering the appearances changes of the plastic mulching farmland, two groups of experimental schemes were designed to verify the model’s generalization performance and enhance its classification accuracy respectively. The recognition effect of the improved DeepLabv3+ semantic segmentation model was 7.1 percentage points higher than that of visible light. At the same time, the deep semantic segmentation model considering the apparent changes of mulching fields had a higher classification accuracy, and its average pixel accuracy was 7.7 percentage points higher than that without considering the apparent changes of mulching fields, indicating that the diversity of training data was helpful to improve the recognition accuracy of mulching fields. Secondly, the improved DeepLabv3+ semantic segmentation model had adaptive learning of mulch attention, in both experiments, and its classification accuracy was higher than that of the original DeepLabv3+ model. It was suggested that the attention mechanism can increase the adaptability of deep semantic segmentation model and thus improve the classification accuracy. The proposed method can accurately identify plastic mulching farmland from complex scenes and provide a method reference for monitoring plastic mulching farmland and analyzing their distribution.

    參考文獻(xiàn)
    相似文獻(xiàn)
    引證文獻(xiàn)
引用本文

寧紀(jì)鋒,倪靜,何宜家,李龍飛,趙志新,張智韜.基于卷積注意力的無(wú)人機(jī)多光譜遙感影像地膜農(nóng)田識(shí)別[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2021,52(9):213-220. NING Jifeng, NI Jing, HE Yijia, LI Longfei, ZHAO Zhixin, ZHANG Zhitao. Convolutional Attention Based Plastic Mulching Farmland Identification via UAV Multispectral Remote Sensing Image[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(9):213-220.

復(fù)制
分享
文章指標(biāo)
  • 點(diǎn)擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-03-26
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-09-10
  • 出版日期:
文章二維碼