亚洲一区欧美在线,日韩欧美视频免费观看,色戒的三场床戏分别是在几段,欧美日韩国产在线人成

基于多傳感器人工嗅覺系統(tǒng)的土壤有機質(zhì)含量檢測方法
作者:
作者單位:

作者簡介:

通訊作者:

中圖分類號:

基金項目:

吉林省科技發(fā)展計劃項目(20200502007NC、20190302116GX)


Detection Method of Soil Organic Matter Based on Multi-sensor Artificial Olfactory System
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 圖/表
  • |
  • 訪問統(tǒng)計
  • |
  • 參考文獻
  • |
  • 相似文獻
  • |
  • 引證文獻
  • |
  • 資源附件
  • |
  • 文章評論
    摘要:

    為了實現(xiàn)對土壤有機質(zhì)含量的快速、方便、準確測量,本文提出了一種基于多傳感器人工嗅覺系統(tǒng)的土壤有機質(zhì)含量檢測方法。選取10個不同型號的氧化物半導(dǎo)體式氣體傳感器組成傳感器陣列,并采用不同濃度的硫化氫、氨氣和甲烷等標(biāo)準氣體對傳感器陣列進行了響應(yīng)測試,從響應(yīng)曲線可以看出,傳感器陣列對不同濃度、種類的標(biāo)準氣體皆有響應(yīng)且響應(yīng)結(jié)果不同,隨著標(biāo)準氣體濃度的增大傳感器陣列的響應(yīng)曲線也隨之上升,表明傳感器陣列具有較高的特異性和一定的交叉敏感性。提取每個傳感器土壤氣體響應(yīng)曲線上的響應(yīng)面積、最大值、平均微分系數(shù)、方差、平均值和最大梯度6個特征構(gòu)建人工嗅覺特征空間。采用偏最小二乘法回歸(PLSR)、支持向量機回歸(SVR)和BP神經(jīng)網(wǎng)絡(luò)(BPNN)算法建立人工嗅覺特征空間與土壤有機質(zhì)含量關(guān)系的預(yù)測模型,使用決定系數(shù)(R2)、均方根誤差(RMSE)和絕對平均誤差(MAE)評估預(yù)測模型的性能。試驗結(jié)果表明,PLSR、BPNN、SVR測試集的R2分別為0.80878、0.87179和0.91957,RMSE分別為3.6784、3.1614、2.4254g/kg,MAE分別為3.1079、2.4154、2.1389g/kg。SVR算法建立的模型R2最高,RMSE、MAE最小,比PLSR、BPNN具有更好的預(yù)測性能,可用于土壤有機質(zhì)含量的測量。

    Abstract:

    In order to achieve a rapid, convenient and accurate measurement of the soil organic matter (SOM) content, a multi-sensor array based on artificial olfactory technology was designed to detect SOM content. Totally ten different types of oxide semiconductor gas sensors were selected to form the sensor array, and different concentrations of hydrogen sulfide, ammonia and methane standard gases were used to test the response of the sensor array. It can be seen from the response curve that the sensor array responded to different concentrations and types of standard gases, and the response results were not the same. With the increase of the standard gas concentration, the response curve of the sensor array was also increased. The test results showed that the sensor array had high specificity and certain cross-sensitivity. And from the soil gas response curve of each sensor, six features (response area value, maximum value, average differential coefficient, variance, average value and maximum gradient) were extracted to construct an artificial olfactory feature space (AOFS). Then, partial least square regression (PLSR), back propagation neural network (BPNN) and support vector machine regression (SVR) algorithms were used to establish the prediction model of AOFS and SOM content, and the coefficient of determination (R2), root mean square error (RMSE) and absolute average error (MAE) were used to evaluate the performance of the prediction model. The test results showed that the R2 of the PLSR, BPNN, and SVR test sets were 0.80878, 0.87179 and 0.91957, the RMSE were 3.6784g/kg, 3.1614g/kg and 2.4254g/kg, and the MAE were 3.1079g/kg, 2.4154g/kg and 2.1389g/kg, respectively. The model established by the SVR algorithm had the highest R2, the smallest RMSE and MAE. It had higher predictive performance than PLSR and BPNN, and can be used for the measurement of SOM content.

    參考文獻
    相似文獻
    引證文獻
引用本文

李名偉,朱慶輝,夏曉蒙,劉鶴,黃東巖.基于多傳感器人工嗅覺系統(tǒng)的土壤有機質(zhì)含量檢測方法[J].農(nóng)業(yè)機械學(xué)報,2021,52(10):109-119. LI Mingwei, ZHU Qinghui, XIA Xiaomeng, LIU He, HUANG Dongyan. Detection Method of Soil Organic Matter Based on Multi-sensor Artificial Olfactory System[J]. Transactions of the Chinese Society for Agricultural Machinery,2021,52(10):109-119.

復(fù)制
分享
文章指標(biāo)
  • 點擊次數(shù):
  • 下載次數(shù):
  • HTML閱讀次數(shù):
  • 引用次數(shù):
歷史
  • 收稿日期:2021-07-31
  • 最后修改日期:
  • 錄用日期:
  • 在線發(fā)布日期: 2021-08-22
  • 出版日期:
文章二維碼